A hybrid thermal lattice Boltzmann cavitation model based on a nonorthogonal framework is developed to investigate the interaction of two attached-wall cavitation bubbles. The interaction modes are systematically analyzed, with an emphasis on how varying contact angles influence the flow and temperature distributions, as well as the evolution of wall heat flux under strong and weak interaction conditions. Bubbles formed on the hydrophobic surface display increased contact radius and greater curvature radii compared to those on the hydrophilic wall, leading to greater volumes but weaker collapse intensity. The growth rate of the bubble equivalent radius for the weak interaction modes consistently follows the relation U∝2p∞/3ρl. Additionally, bubble coalescence occurs at the interface regions along the hydrophobic surface, altering the final collapse dynamics and resulting in distinct temperature and velocity distributions. Finally, the instantaneous heat flux characteristics are explored. Due to differences in the contact points motion rate and microjet angle with the solid wall, the peak value and number of heat flux peaks vary on walls with different wettability.
QC 20250424