Clustering Economic Regimes with Jump Models for Asset Management
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesis
Abstract [en]
This thesis proposes an innovative approach for identifying economic regimes using Jump Models (JMs), a family of clustering and optimization methods. Traditional regime detection methods, such as Markov Switching Models (MSMs), often face challenges in capturing the complexity and dynamic nature of modern financial markets. By using a JM combined with a systematic variable selection and transformation process, this study improves regime identification by directly optimizing regime separability and return profiles, while explicitly penalizing unnecessary regime shifts through a jump penalty. The model is applied to U.S. macroeconomic and financial data from 2003 to 2025, using variables such as interest rates, macroeconomic variables, market data, and commodity prices. Regimes are evaluated based on their statistical properties (e.g., volatility, correlations, drawdowns) and their implications for portfolio performance. This approach allows for a nuanced identification of economic states by accommodating temporal complexities and penalizing unnecessary regime shifts. Furthermore, the regime assignment is performed using an online classifier to ensure out-of-sample validity. The results demonstrate that this method offers more stable and economically interpretable regime definitions than traditional approaches. In out-of-sample tests, a regime-aware portfolio constructed using our framework outperformed regimeagnostic benchmarks, including the Mean-Variance portfolio, by achieving a Sharpe ratio of 0.68 compared to 0.51, with a lower market beta compared to the S&P 500. These improvements support the use of JM-based regime classification for strategic asset allocation and risk management by institutional investors.
Abstract [sv]
Denna uppsats presenterar ett innovativt ramverk för att identifiera och analysera ekonomiska regimer med hjälp av Hoppmodeller (JMs), en samling klustringsoch optimeringsmetoder. Traditionella modeller för regimskiften, som till exempel Hidden Markov Models (HMM), har ofta svårt att fånga den komplexitet och dynamik som kännetecknar verkliga makrofinansiella system. Genom att kombinera hoppmodeller med en systematisk variabelselektion och datatransformering förbättras regimidentifieringen. Regimernas separabilitet och avkastningsprofil optimeras samtidigt som onödiga regimskiften uttryckligen straffas via en hopp-penalty. Modellen tillämpas på amerikansk makro- och marknadsdata mellan 2003 och 2025, där indikatorer som räntor, makroekonomiska variabler, marknadsdata och råvarupriser ingår. Regimerna utvärderas både statistiskt (t.ex. volatilitet, korrelationer, drawdowns) och utifrån deras påverkan på portföljprestanda. Dessutom utförs regimklassificering med en online algoritm för att säkerställa utvärdering out-ofsample. Resultaten visar att denna metod ger mer stabila regimdefinitioner jämfört med traditionella tillvägagångssätt. Den regimmedvetna portföljen baserad på vår modell överträffade en statisk Mean-Variance-portfölj med Sharpe-kvot på 0,68 jämfört med 0,51, samt ett lägre marknadsbeta mot S&P 500. Detta stärker modellens relevans för strategisk tillgångsallokering och riskhantering för institutionella investerare.
Place, publisher, year, edition, pages
2025. , p. 53
Series
Examensarbete INDEK
Keywords [en]
Time Series, Clustering, Economic Regimes, Regime Switching, Asset Allocation, Financial Market Regimes, Statistical Jump Models, Regime Identification
Keywords [sv]
Tidsserier, Klustring, Ekonomiska Regimer, Regimskiften, Tillgångsallokering, Finansiella Marknadsregimer, Statistiska Hoppmodeller, Regimidentifiering
National Category
Computer and Information Sciences Engineering and Technology Mathematical sciences Economics and Business
Identifiers
URN: urn:nbn:se:kth:diva-364103OAI: oai:DiVA.org:kth-364103DiVA, id: diva2:1963774
External cooperation
Fjärde AP-fonden (AP4)
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Presentation
2025-05-19, KTH, Lindstedtsvägen 25, Stockholm, 17:30 (English)
Supervisors
Examiners
2025-06-042025-06-042025-06-04Bibliographically approved