kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Equity Portfolio Risk Forecast: Multivariate Volatility and Tail-Risk Approach
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).
2025 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Riskprognos för aktieportfölj: En multivariat ansats för volatilitet och svansrisk (Swedish)
Abstract [en]

Accurate forecasting portfolio volatility and tail risk is crucial for effective risk management in financial institutions. This study conducts a comparison of two multivariate frameworks - Dynamic Conditional Correlation (DCC) and Random Matrix Theory–enhanced Constant Conditional Correlation (RMT-CCC) - applied to the Svea Bank AB 48 stock equity portfolio. The univariate GARCH and EGARCH models assume residuals drawn from a Student's \(t_{\nu}\)-distribution with \(\nu\) degrees of freedom, and their resulting time-varying volatility forecasts are embedded in the DCC and RMT-CCC correlation frameworks. From these, we generate one-day-ahead forecasts of Value at Risk (VaR) and Expected Shortfall (ES) loss over an out-of-sample period. The precision of volatility forecasts is evaluated through comparison between predicted and realized volatilities, employing standard error metrics (RMSE, MAE, MAPE), while the suitability of the one-day-ahead VaR and ES forecasts is verified through Kupiec unconditional coverage and Christoffersen conditional coverage tests. The results reveal that, under limited calibration (356 trading days) and evaluation windows (100 trading days), the benefits of more sophisticated correlation and asymmetry models are limited under constrained data conditions for specific assets. This highlights a practical trade-off between model complexity and forecast reliability.

Abstract [sv]

Noggrann prognostisering av portföljvolatilitet och svansrisk är avgörande för effektiv riskhantering inom finansinstitut. Denna studie genomför en jämförande analys av två multivariata ramverk – Dynamic Conditional Correlation (DCC) och Random Matrix Theory–förbättrad Constant Conditional Correlation (RMT-CCC) – tillämpade på Svea Bank AB:s portfölj med 48 aktier. För de univariata GARCH- och EGARCH-modellerna antas felen följa en Student's \(t_{\nu}\)-fördelning med \(\nu\) frihetsgrader, och deras beräknade tidsvarierande volatilitetsprognoser integreras i DCC- respektive RMT-CCC-ramverken. Utifrån dessa genereras endagsprognoser för Value at Risk (VaR) och Expected Shortfall (ES) över en test period. Noggrannheten i volatilitetsprognoserna utvärderas genom att jämföra prognostiserad och realiserad volatilitet med standardiserade felmått (RMSE, MAE, MAPE), medan lämpligheten hos endagsprognoserna för VaR och ES prövas med Kupiec test för obetingad täckning och Christoffersen test för betingad täckning. Resultaten visar att under begränsade kalibreringsfönster (356 trading dagar) och utvärderingsfönster (100 trading dagar) tenderar fördelarna med mer sofistikerade korrelations- och asymmetrimodeller att vara begränsade när data tillgången är minimal för specifika aktier. Detta belyser en praktisk avvägning mellan modellkomplexitet och prognosers tillförlitlighet.

Place, publisher, year, edition, pages
2025. , p. 73
Series
TRITA-SCI-GRU ; 2025:078
Keywords [en]
Volatilitetsprognoser, Multivariat GARCH-typ modellering, Dynamisk villkorad korrelation, Korrelation filtrering med Slump Matris Teori, Value at Risk (VaR), Expected Shortfall (ES), Aktieportföljrisk, Backtesting
Keywords [sv]
Volatility forecasting, Multivariate GARCH-type modeling, Dynamic Conditional Correlation, Random Matrix Theory–filtered correlations, Value at Risk, Expected Shortfall, Equity portfolio risk, Backtesting.
National Category
Other Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-364111OAI: oai:DiVA.org:kth-364111DiVA, id: diva2:1963954
External cooperation
Svea Bank AB
Subject / course
Financial Mathematics
Educational program
Master of Science - Applied and Computational Mathematics
Supervisors
Examiners
Available from: 2025-06-04 Created: 2025-06-04 Last updated: 2025-06-04Bibliographically approved

Open Access in DiVA

fulltext(2093 kB)23 downloads
File information
File name FULLTEXT01.pdfFile size 2093 kBChecksum SHA-512
2d4d174b9ad94c7c7a5c5ecda97ebf062877519449da0942e523026c50a0f77b995a3c221fd61c79ffef07208e0baa40727f04755dd6bde4d60c695d56783364
Type fulltextMimetype application/pdf

By organisation
Mathematics (Dept.)
Other Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 23 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 189 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf