kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the interaction between two fixed spherical particles
Show others and affiliations
2007 (English)In: International Journal of Multiphase Flow, ISSN 0301-9322, E-ISSN 1879-3533, Vol. 33, no 7, p. 707-725Article in journal (Refereed) Published
Abstract [en]

The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (a) and the separation distance (do) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow Situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions.

Place, publisher, year, edition, pages
2007. Vol. 33, no 7, p. 707-725
Keywords [en]
dual particles, interaction, Volume of Solid (VOS), lattice Boltzmann method (LBM), low reynolds-numbers, particulate suspensions, flow characteristics, boltzmann-equation, viscous-fluid, drag force, spheres, motion, side, wake
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-16800DOI: 10.1016/j.ijmultiphaseflow.2007.02.001ISI: 000248068700002Scopus ID: 2-s2.0-34249873234OAI: oai:DiVA.org:kth-16800DiVA, id: diva2:334843
Note

QC 20100525 QC 20111114

Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Prahl Wittberg, Lisa

Search in DiVA

By author/editor
Prahl Wittberg, LisaFuchs, Laszlo
In the same journal
International Journal of Multiphase Flow
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 353 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf