kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Robust Cognitive Beamforming With Bounded Channel Uncertainties
Department of Electrical and Electronic Engineering, University College London.
Department of Electrical and Electronic Engineering, University College London.
KTH, School of Electrical Engineering (EES), Signal Processing. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. (Signal Processing)ORCID iD: 0000-0003-2298-6774
2009 (English)In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 57, no 12, p. 4871-4881Article in journal (Refereed) Published
Abstract [en]

This paper studies the robust beamforming design for a multi-antenna cognitive radio (CR) network, which transmits to multiple secondary users (SUs) and coexists with a primary network of multiple users. We aim to maximize the minimum of the received signal-to-interference-plus-noise ratios (SINRs) of the SUs, subject to the constraints of the total SU transmit power and the received interference power at the primary users (PUs) by optimizing the beamforming vectors at the SU transmitter based on imperfect channel state information (CSI). To model the uncertainty in CSI, we consider a bounded region for both cases of channel matrices and channel covariance matrices. As such, the optimization is done while satisfying the interference constraints for all possible CSI error realizations. We shall first derive equivalent conditions for the interference constraints and then convert the problems into the form of semi-definite programming (SDP) with the aid of rank relaxation, which leads to iterative algorithms for obtaining the robust optimal beamforming solution. Results demonstrate the achieved robustness and the performance gain over conventional approaches and that the proposed algorithms can obtain the exact robust optimal solution with high probability.

Place, publisher, year, edition, pages
2009. Vol. 57, no 12, p. 4871-4881
Keywords [en]
Cognitive radio, interference control, MIMO, robust beamforming, radio networks, convex-optimization, power allocation, multiuser, systems
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-18973DOI: 10.1109/tsp.2009.2027462ISI: 000271958600022Scopus ID: 2-s2.0-70450284436OAI: oai:DiVA.org:kth-18973DiVA, id: diva2:337020
Note
QC 20100525Available from: 2010-08-05 Created: 2010-08-05 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
By organisation
Signal ProcessingACCESS Linnaeus Centre
In the same journal
IEEE Transactions on Signal Processing
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 77 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf