kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Satellite Monitoring of Urban Land Cover Change in Stockholm Between 1986 and 2006 and Indicator-Based Environmental Assessment
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics. (Geoinformatics)ORCID iD: 0000-0003-2641-4220
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geodesy and Geoinformatics. (Geoinformatics)ORCID iD: 0000-0003-1369-3216
2013 (English)In: Earth Observation of Global Changes (EOGC), Springer Berlin/Heidelberg, 2013, p. 205-222Chapter in book (Refereed)
Abstract [en]

Over the past few decades, there has been substantial urban growth in Stockholm, Sweden, now the largest city in Scandinavia. This research investigates and evaluates the evolution of land cover/use change in Stockholm between 1986 and 2006 with a particular focus on what impact urban growth has had on the environment using indicators derived from remote sensing and environmental data. Four scenes of SPOT imagery over the Stockholm County area were acquired for this study including two on 13 June 1986, one on 5 August 2006 and one on 4 June 2008. These images are classified into seven land cover categories using an object-based and rule-based approach with spectral data and texture measures as inputs. The classification is then used to generate spatial metrics and environmental indicators for evaluation of fragmentation and land cover/land use change. Based on the environmental indicators, an environmental impact index is constructed for both 1986 and 2006 and then compared. The environmental impact index is based on the proportion and condition of green areas important for ecosystem services, proximity of these areas to intense urban land use, proportion of urban areas in their immediate vicinity, and how impacted they are by noise. The analysis units are then ranked according to their indicator values and an average of the indicator rankings gives an overall index score. Results include a ranking of the landscape in terms of environmental impact in 1986 and 2006, as well as an analysis of which units have improved the least or the most and why. The highest ranked units are located most often to the north and east of the central Stockholm area, while the lowest tend to be located closer to the center itself. Yet units near the center also tended to improve the most in ranking over the two decades, which would suggest a convergence towards modest urban expansion and limited environmental impact.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2013. p. 205-222
Series
Lecture Notes in Geoinformation and Cartography, ISSN 1863-2246
National Category
Earth Observation Environmental Management
Identifiers
URN: urn:nbn:se:kth:diva-87792DOI: 10.1007/978-3-642-32714-8_14Scopus ID: 2-s2.0-85032014676OAI: oai:DiVA.org:kth-87792DiVA, id: diva2:501896
Note

Part of ISBN 978-3-642-32713-1

QC 20250214

Available from: 2012-02-14 Created: 2012-02-14 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Satellie Monitoring of Urban Growth and Indicator-based Assessment of Environmental Impact
Open this publication in new window or tab >>Satellie Monitoring of Urban Growth and Indicator-based Assessment of Environmental Impact
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

One of the major consequences of urbanization is the transformation of land surfaces from rural/natural environments to built-up land that supports diverse forms of human activity. These transformations impact the local geology, climate, hydrology, flora and fauna and human-life supporting ecosystem services in the region. Mapping and analysis of land use/land cover change in urban regions and tracking their environmental impact is therefore of vital importance for evaluating policy options for future growth and promoting sustainable urban development.

The overall objective of this research is to investigate the extent of urban growth and/or sprawl and its potential environmental impact in the regions surrounding a few selected major cities in North America, Europe and Asia using landscape metrics and other environmental indicators to assess the landscape changes. The urban regions examined are the Greater Toronto Area (GTA) in Canada, Stockholm region and County in Sweden and Shanghai in China. The analyses are based on classificatons of optical satellite imagery (Landsat TM/ETM+ or SPOT 1/5) between 1985 and 2010. Maximum likelihood classification (MLC) under urban/rural masks, objectbased image analysis (OBIA) with rule-based classification and support vector machines (SVM) classification methods were used with grey level cooccurrence matrix (GLCM) texture features as input to help obtain higher accuracies. Based on the classification results, landscape metrics, selected environmental indicators and indices, and ecosystem service valuation were calculated and used to estimate environmental impact of urban growth.

The results show that urban areas in the GTA grew by nearly 40% between 1985 and 2005. Results from the landscape metrics and urban compactness indicators show that low-density built-up areas increased significantly in the GTA between 1985 and 2005, mainly at the expense of agricultural areas. The majority of environmentally significant areas were increasingly surrounded by urban areas between 1985 and 2005, furthering their isolation from other natural areas. Urban areas in the Stockholm region increased by 10% between 1986 and 2006. The landscape metrics indicated that natural areas became more isolated or shrank whereas new small urban patches came into being. The most noticeable changes in terms of environmental impact and urban expansion were in the east and north of the study area. Large forested areas in the northeast dropped the most in terms of environmental impact ranking, while the most improved analysis units were close to the central Stockholm area. The study comparing Shanghai and Stockholm County revealed that urban areas increased ten times as much in Shanghai as they did in Stockholm, at 120% and 12% respectively. The landscape metrics results show that fragmentation in both study regions occurred mainly due to the growth of high density built-up areas in previously more natural environments, while the expansion of low density built-up areas was for the most part in conjunction with pre-existing patches. The growth in urban areas resulted in ecosystem service value losses of approximately 445 million USD in Shanghai, mostly due to the decrease in natural coastal wetlands, while in Stockholm the value of ecosystem services changed very little.

This study demonstrates the utility of urban and environmental indicators derived from remote sensing data via GIS techniques in assessing both the spatio-temporal dynamics of urban growth and its environmental impact in different metropolitan regions. High accuracy classifications of optical medium resolution remote sensing data are achieved thanks in part to the incorporation of texture features for both object- and pixel-based classification methods, and to the use of urban/rural masks with the latter. The landscape metrics calculated based on the classifications are useful in quantifying urban growth trends and potential environmental impact as well as facilitating their comparison. The environmental indicator results highlight the challenges in terms of sustainable urban growth unique to each landscape, both spatially and temporally. The next phase of this PhD research will involve finding valid methods of comparing and contrasting urban growth patterns and estimated environmental impact in different regions of the world and further exploration of how to link urbanizing landscapes to changes in ecosystem services via environmental indicators.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. p. xi, 91
Series
TRITA-SOM, ISSN 1653-6126 ; 2014-15
Keywords
Urban growth, remote sensing, landcover classification, landscape metrics, environmental indicators, environmental impact, Greater Toronto Area, Stockholm, Shanghai
National Category
Environmental Management
Identifiers
urn:nbn:se:kth:diva-157669 (URN)978-91-7595-353-3 (ISBN)
Presentation
2014-12-12, Seminarierum 4055, 3tr, Drottning Kristinas Väg 30, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20141212

Available from: 2014-12-12 Created: 2014-12-12 Last updated: 2025-02-10Bibliographically approved
2. Satellite Monitoring of Urbanization and Indicator-based Assessment of Environmental Impact
Open this publication in new window or tab >>Satellite Monitoring of Urbanization and Indicator-based Assessment of Environmental Impact
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

As of 2018, 55% of the world population resides in urban areas. This proportion is projected to increase to 68% by 2050 (United Nations 2018). The Stockholm region is no exception to this urbanizing trend: the population of Stockholm City has risen by 28% since the year 2000. One of the major consequences of urbanization is the transformation of land cover from rural/natural environments to impervious surfaces that support diverse forms of human activity. These transformations impact local geology, climate, hydrology, flora and fauna and human-life supporting ecosystem services in the region where they occur. Mapping and analysis of land-cover change in urban regions and monitoring their environmental impact is therefore of vital importance for evaluating policy options for future growth and promoting sustainable urban development.The overall objective of this research is to investigate the extent of urbanization and analyze its environmental impact in and around selected major cities in North America, Europe and Asia by evaluating change in relevant environmental indicators, from local to regional scales. The urban regions examined are the Greater Toronto Area in Canada, Stockholm City, region and County in Sweden and Shanghai in China. The analyses are based on classifications of optical satellite imagery at medium to high spatial resolutions (i.e, Landsat TM/ETM+, SPOT 1/5, Sentinel-2A MSI and QuickBird-2/WorldView-2) between 1985 and 2018. Various classification techniques (maximum likelihood under urban/rural masks, object-based image analysis with rule-based or support vector machine classifiers) were used with combinations of spectral, shape and textural input features to obtain high accuracy classifications. Environmental indicators such as landscape metrics, urbanization indices, buffer/edge/proximity analysis, ecosystem service valuation and provision bundles as well as habitat connectivity were calculated based on the classifications and used to estimate environmental impact of urbanization.The results reveal urban growth and environmental impact to varying degrees in each of the study sites. Urban areas in the GTA grew by nearly 40% between 1985 and 2005. There, change in landscape metrics and urban compactness measures indicated that low-density built-up areas increased significantly, mainly at the expense of agricultural areas. Urban land cover increasingly surrounded the majority of environmentally significant areas during the examined time-period, furthering their isolation from other natural areas. The study comparing Shanghai and Stockholm County between 1990 and 2010 revealed that urban areas increased ten times as much in Shanghaiivas they did in Stockholm, at 120% and 12% respectively. Fragmentation in both study regions occurred mainly due to the growth of high-density built-up areas in previously more natural environments, while the expansion of low-density built-up areas was mostly in conjunction with pre-existing patches. The growth in urban areas resulted in ecosystem service value losses of approximately 445 million USD in Shanghai, largely due to the decrease in natural coastal wetlands, while in Stockholm the value of ecosystem services changed very little. The remotely sensed data for these studies had the same resolution (30 m) at roughly the same study area extent, which allowed cross-site comparison of regional urbanization and environmental change trends.Analysis of classifications of SPOT data at 20/10 m resolution indicated urban areas in the greater Stockholm metropolitan area increased by 10% between 1986 and 2006. The landscape metrics indicated that natural areas became more isolated or shrank whereas new small urban patches appeared. Large forested areas in the northeast dropped the most in terms of environmental impact ranking, while the most improved analysis units were close to central Stockholm. Land-cover change analysis in Stockholm County between 2005 and 2015 using Sentinel-2 and SPOT-5 data at 10 m resolution indicated that urban areas increased by 15% and non-urban land cover decreased by 4%. This data’s higher spatial resolution combined with the county study area extent allowed for analysis of regional ecosystem services as well as localized impacts on green infrastructure. In terms of ecosystem services, changes in proximity of forest and low-density built-up areas were the main cause of lowered provision of temperature regulation, air purification and noise reduction. Urban areas near nature reserves increased 16%, with examples of their construction along reserve boundaries. Urban expansion overlapped the deciduous ecological corridor network and green wedge/core areas to a small but increasing degree, often in close proximity to weak but important green links in the landscape. The results from the urban land-cover change analysis based on high-resolution (1 m) data over Stockholm City between 2003 and 2018 revealed that the most significant change occurred through the expansion of the transport network, paved surfaces and construction areas, which increased by 12%, mainly at the expense of grass fields and coniferous forest. Examination of urban growth within ecologically significant green infrastructure indicated that most land area was lost in ecological dispersal zones while the highest percent change was within habitat for species of conservation concern (14%). The high-resolution data made it possible to perform connectivity analysis of the habitat network for the European crested tit, representing small coniferous forest-dependent bird species in Stockholm. Habitat network analysis in both years revealed that overall probability of connectivity decreased slightly through patch fragmentation and shrinkage mainly caused by road expansion at the outskirts of the city.vThis research demonstrates the utility of urban and environmental indicators combined with remote sensing data to assess the spatio-temporal dynamics of urbanization and its environmental impact in different urban regions. Landscape-metric based bundles were effective for monitoring ecosystem service provision in a moderately urbanizing region. Habitat network analysis based on high-resolution urban land-cover classifications, which has not often been undertaken in previous research, provided informative results. A complementary dual-level analysis approach worked well in several studies. Appropriate indicators at the landscape level yielded an estimation of overall impacts on ecosystem value or service provision for the whole region. More specific indicator analysis at a local level pertaining to green infrastructure highlighted impacted ecological areas as localized manifestations of the regional trends. In addition, comparison of classified remotely sensed urban land-cover data with administrative boundaries and significant green infrastructure can reveal transboundary “hotspots” where environmental impact occurs and where further investigation and coordinated conservation or restorative management efforts may be needed. The combination of study results pertaining to Stockholm allowed comparison of classifications of differing spatial resolutions over the same spatial extent, highlighting advantages and challenges in satellite-based urban land-cover mapping for estimation of environmental impact.

Abstract [sv]

År 2050 förväntas 68 % av världens befolkning bo i urbana områden, jämfört med dagens 55 % (FN 2018). Stockholmsregionen utgör inget undantag i urbaniseringstrenden: befolkningen i Stockholms stad har ökat med 28 % sedan år 2000. En av de största följderna av urbanisering är markförvandling från lantliga och naturliga miljöer till bebyggda ytor, ämnade för olika former av mänskligt aktivitet. Förvandlingen påverkar lokal geologi, klimat, hydrologi, flora, fauna och ekosystemtjänster som bidrar till att understödja mänskligt liv. Kartläggning och analys av förändringar av marktäcket i urbana regioner och att hålla deras miljöpåverkan under uppsikt är därför kritiskt för att kunna utvärdera politiskt alternativ för framtida tillväxt och stödja hållbar storstadsutveckling.Det övergripande målet med denna forskning är att undersöka urbaniseringens utbredning och dess potentiella miljöpåverkan i regioner i och omkring utvalda storstäder i Nordamerika, Europa och Asien, genom förändringsanalys av relevanta miljöindikatorer, från lokal till regional nivå. De utvalda urbana regionerna är Toronto och dess omgivning i Kanada (Greater Toronto Area), Stockholms stad, region och län i Sverige och Shanghai i Kina. Analyserna baseras på klassificeringar av optiska satellitbilder (Landsat TM/ETM+, SPOT 1/5, Sentinel-2A MSI och Quickbird-2/WorldView-2) från mellan 1985 och 2018. Olika klassificeringstekniker (”maximum likelihood” klassificering under urbana/agrar maskeringar, objektorienterad analys med regelbaserad eller stödvektormaskin klassificering) användes med kombinerade spektral-, form- och texturdrag som indata för att höja noggrannheten. Miljöindikatorer så som landskapsnyckeltal, urbaniseringsindex, buffer-/kant-/närhetsanalys, ekosystemtjänstvärdering eller försöjningsgrupperingar och habitatnätverkskonnektivitet har beräknats baserad på klassificeringarna och har använts för att uppskatta urbaniseringens miljöpåverkan.Resultaten visar olika grader av urban tillväxt och miljöpåverkan i varje studieområde. Urbana områden i den Greater Toronto Area (GTA) växte närmare 40 % mellan 1985 och 2005. Förändring i beräknade landskapsnyckeltal och urbana täthetsindikatorer visar att glest bebyggda områden växte betydligt i GTA mellan 1985 och 2005, på bekostnad av agrara områden. Majoriteten av de betydelsefulla ekologiska områdena omringades allt mer av urbana områden, vilket bidrog till deras isolering från andra naturliga områden. Jämförelsens studie mellan Shanghai och Stockholms län visade att urbana områden växte tio gånger mer i Shanghai än i Stockholm, med 120 % respektive 12 %. Landskapsfragmentering i båda studieområdena skedde på grund av tätbebyggda områdens tillväxt i tidigare mer naturliga miljöer, medan utbredningen av glest bebyggda områden skedde främst i direkt anslutning till redan existerande sådana. Tillväxten av urbana områden ledde till en värderingsförlust i ekosystemtjänster av ungefär 445 miljoner amerikanska dollar i Shanghai, mest på grund av en minskning i naturliga kustvåtmarker, medan ekosystemtjänsters värdering i Stockholm förändrades väldigt lite. Fjärranalysdatan i dessa studier hade samma upplösning (30 m) på ungefär samma rumsliga uträckning, vilket tillät jämförelser av regional urbanisering och miljöförändringstrender.Analys av klassificeringar av SPOT data på 20/10 m upplösning indikerade att urbana områden i Stockholms region växte med 10 % mellan 1986 och 2006. Resultaten från lansskapsnyckeltalen tyder på att naturliga områden isolerades mer eller krympte medan däremot nya små urbana områden blev till. Större skogsområden i nordöstra delen tappade mest i miljöpåverkans rangordning, medan de mest förbättrade befann sig närmare centrala Stockholm. Marktäckeförändringsanalys i Stockholms län mellan 2005 och 2015, baserad på Sentinel-2 och SPOT-5 data med 10 m upplösning, visade att urbana områden växte med 15 % och att icke urban mark reducerades med 4 %. Denna datas högre upplösning, tillsammans med länstudieområdet, möjliggjorde analys av regionala ecosystemtjänster och den lokala påverkan på grön infrastruktur. En förändring av närliggande skog och glest bebyggda områden hade en påverkan på ekosystemtjänsterna så som temperaturreglering, luftrening och ljudreduktion. Urbana områden nära naturreservat ökade med 16 %, med exempelvis byggnationer längs reservatgränser. Urban utbredning överlappade ädellövnätverkets spridningszoner och gröna kilar/kärnor till en liten men växande grad, ofta i närheten av de redan svaga men dock så viktiga gröna förbindelserna i landskapet. Resultaten från en urban marktäcke förändringsanalys baserad på högupplöst data (1 m) över Stockholms stad mellan 2003 och 2018 visar att den största förändringen skedde genom en expansion av transportnätverket och byggnadsplatser som ökade med 12 %, på bekostnad av öppna gräsfält och barrskog. Undersökningen av urbanisering inom ekologiskt betydelsefulla grön infrastruktur tydde på den största minskningen av markarea skedde inom spridningszonerna, medan största relativa förändringen fanns inom habitat för skyddsvärda arter (14 %). Den högupplösta data möjliggjorde konnektivitetsanalys av habitatnätverk för tofsmesen, representant för barrskogsfåglar i Stockholm. Habitat nätverksanalysen visade att den övergripande sannolikheten för konnektiviteten minskade något till följd av fragmentering och minskning av habitatarea, som i sin tur orsakades av en utbyggnad av vägnätet i utkanten av staden.Den här forskningsavhandlingen visar på användbarheten av urbaniserings- och miljöindikatorer som erhållits från fjärranalysdata för att utvärdera både rumslig och tidsmässig dynamik av urbanisering och dess miljöpåverkan i olika storstadsregioner. Landskapsnyckeltal-baserade grupperingar visade sig vara effektiva för övervakning av ekosystemtjänstförsörjning i en måttligt växande region. Den sparsamt utforskade kombinationen av nätverksanalys av habitat och högupplösta urbana marktäckedatasklassificeringar, gav informativa resultat. Ett tillvägagångssätt med analys på två nivåer var användbart i flera studier. Relevanta indikatorer på landskapsregionalnivå uppskattade övergripande påverkan på ekosystemvärde eller tjänstförsörjning för hela regionen. Mer specifik indikatoranalys på en lokal nivå rörande grön infrastruktur identifierade påverkade ekologiska områden, som representerade lokaliserade uttryck för de regionala trenderna. Dessutom kan en metodik, där en jämförelse av klassificerade urban marktäckedata med administrativa gränser och ekologiskt betydelsefull grön infrastruktur, avslöja gränsöverskridande problemområden med negativ miljöpåverkan. Kring dessa områden kan det behöva göras vidare studier och koordinerade miljöskyddsinsatser. De olika resultaten för Stockholm möjliggör jämförelse av klassificeringar med olika rumslig upplösning över samma rumsliga utsträckning, och belyser fördelar och utmaningar med satellitbaserad kartläggning av urban marktäckedata för uppskattning av miljöpåverkan.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 133
Series
TRITA-ABE-DLT ; 1944
Keywords
Urbanization, remote sensing, land-cover classification, landscape metrics, environmental indicators, environmental impact, ecosystem services, green infrastructure, habitat network analysis, Greater Toronto Area, Stockholm, Shanghai, urbanisering, fjärranalys, marktäckeklassificering, landskapsnyckeltal, miljöindikatorer, miljöpåverkan, ekosystemtjänster, grön infrastruktur, habitat nätverksanalys, Greater Toronto Area, Stockholm, Shanghai
National Category
Earth Observation
Research subject
Geodesy and Geoinformatics; Geodesy and Geoinformatics, Geoinformatics
Identifiers
urn:nbn:se:kth:diva-263845 (URN)978-91-7873-386-6 (ISBN)
Public defence
2019-12-06, Visualization Studio VIC, 4451, Lindstedtsvägen 5, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20191118

Available from: 2019-11-18 Created: 2019-11-15 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Furberg, DorothyBan, Yifang

Search in DiVA

By author/editor
Furberg, DorothyBan, Yifang
By organisation
Geodesy and Geoinformatics
Earth ObservationEnvironmental Management

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 372 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf