kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Optimal Array Signal Processing in the Presence of Coherent Wavefronts
Department of Systems and Control, Uppsala University, Uppsala, Sweden.
KTH, Superseded Departments (pre-2005), Signals, Sensors and Systems.ORCID iD: 0000-0003-2298-6774
Department of Applied Electronics, Chalmers University of Technology, Gothenburg, Sweden.
1996 (English)In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing.  ICASSP-96, IEEE , 1996, p. 2904-2907Conference paper, Published paper (Refereed)
Abstract [en]

The problem of estimating the parameters of several wavefronts from the measurements of multiple sensors is often referred to as array signal processing. The maximum likelihood (ML) estimator in array signal processing forthe case of non-coherent signals has been studied extensively. The focus here is on the ML estimator for thecase of stochastic coherent signals which arises due to, for example, specular multipath propagation. We showthe very surprising fact that the ML estimates of the signal parameters obtained by ignoring the information thatthe sources are coherent, coincide in large samples with the ML estimates obtained by exploiting the coherentsource information. Thus, the ML signal parameter estimator derived for the non-coherent case (or its large-sample realizations such as MODE os WSF) asymptotically achieves the lowest possible estimation error variance (corresponding to the coherent Cramer-Rao bound)

Place, publisher, year, edition, pages
IEEE , 1996. p. 2904-2907
Keywords [en]
Array signal processing, Covariance matrix, Estimation error, Maximum likelihood detection, Maximum likelihood estimation, Parameter estimation, Process control, Sensor arrays, Stochastic processes, Stochastic resonance
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-92590DOI: 10.1109/ICASSP.1996.550161OAI: oai:DiVA.org:kth-92590DiVA, id: diva2:513861
Conference
IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP-96. 7-10 May 1996, Atlanta, GA
Note
NR 20140805Available from: 2012-04-03 Created: 2012-04-03 Last updated: 2022-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
By organisation
Signals, Sensors and Systems
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf