Robust and versatile controlled radical polymerization, also in air, was achieved via single electron transfer living radical polymerization (SET-LRP) initiated by purposely designed hemicellulose-derived macroinitiators. The efficiency of the substitution reaction, converting the polysaccharides into bromo-multifunctionalized initiators, as well as the rate of subsequent induced polymerizations of methyl acrylate were controlled by the hemicellulose repeating unit structure, branching pattern, and molecular weight. Macroinitiators with mannan-based backbones induce SET-LRP with somewhat higher apparent rate constants than xylan-derived analogues, increasing by a factor two to three when raising the reaction temperature from 25 to 40 degrees C. The presence of lignin in a non-purified xylan fraction did not impair its viability as a macroinitiator. Hemicellulose-initiated SET-LRP was feasible in air, proceeding with comparable or somewhat higher apparent rate constants than when conducted under deoxygenated conditions.