kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Perception of Gaze Direction for Situated Interaction
KTH, School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH, Speech Communication and Technology.
KTH, School of Computer Science and Communication (CSC), Speech, Music and Hearing, TMH, Speech Communication and Technology.ORCID iD: 0000-0002-8579-1790
2012 (English)In: Proceedings of the 4th Workshop on Eye Gaze in Intelligent Human Machine Interaction, Gaze-In 2012, ACM , 2012Conference paper, Published paper (Refereed)
Abstract [en]

Accurate human perception of robots' gaze direction is crucial for the design of a natural and fluent situated multimodal face-to-face interaction between humans and machines. In this paper, we present an experiment targeted at quantifying the effects of different gaze cues synthesized using the Furhat back-projected robot head, on the accuracy of perceived spatial direction of gaze by humans using 18 test subjects. The study first quantifies the accuracy of the perceived gaze direction in a human-human setup, and compares that to the use of synthesized gaze movements in different conditions: viewing the robot eyes frontal or at a 45 degrees angle side view. We also study the effect of 3D gaze by controlling both eyes to indicate the depth of the focal point (vergence), the use of gaze or head pose, and the use of static or dynamic eyelids. The findings of the study are highly relevant to the design and control of robots and animated agents in situated face-to-face interaction.

Place, publisher, year, edition, pages
ACM , 2012.
Keywords [en]
ECA, eyelids, furhat, gaze perception, head pose, robot head, situated interaction, talking head
National Category
Human Computer Interaction
Identifiers
URN: urn:nbn:se:kth:diva-105607DOI: 10.1145/2401836.2401839Scopus ID: 2-s2.0-84871552405ISBN: 978-145031516-6 (print)OAI: oai:DiVA.org:kth-105607DiVA, id: diva2:571522
Conference
4th Workshop on Eye Gaze in Intelligent Human Machine Interaction, Gaze-In 2012; Santa Monica, CA; 26 October 2012 through 26 October 2012
Funder
ICT - The Next Generation
Note

QC 20121123

Available from: 2012-11-22 Created: 2012-11-22 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Bringing the avatar to life: Studies and developments in facial communication for virtual agents and robots
Open this publication in new window or tab >>Bringing the avatar to life: Studies and developments in facial communication for virtual agents and robots
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis comes in pursuit of the ultimate goal of building spoken and embodied human-like interfaces that are able to interact with humans under human terms. Such interfaces need to employ the subtle, rich and multidimensional signals of communicative and social value that complement the stream of words – signals humans typically use when interacting with each other.

The studies presented in the thesis concern facial signals used in spoken communication, and can be divided into two connected groups. The first is targeted towards exploring and verifying models of facial signals that come in synchrony with speech and its intonation. We refer to this as visual-prosody, and as part of visual-prosody, we take prominence as a case study. We show that the use of prosodically relevant gestures in animated faces results in a more expressive and human-like behaviour. We also show that animated faces supported with these gestures result in more intelligible speech which in turn can be used to aid communication, for example in noisy environments.

The other group of studies targets facial signals that complement speech. As spoken language is a relatively poor system for the communication of spatial information; since such information is visual in nature. Hence, the use of visual movements of spatial value, such as gaze and head movements, is important for an efficient interaction. The use of such signals is especially important when the interaction between the human and the embodied agent is situated – that is when they share the same physical space, and while this space is taken into account in the interaction.

We study the perception, the modelling, and the interaction effects of gaze and head pose in regulating situated and multiparty spoken dialogues in two conditions. The first is the typical case where the animated face is displayed on flat surfaces, and the second where they are displayed on a physical three-dimensional model of a face. The results from the studies show that projecting the animated face onto a face-shaped mask results in an accurate perception of the direction of gaze that is generated by the avatar, and hence can allow for the use of these movements in multiparty spoken dialogue.

Driven by these findings, the Furhat back-projected robot head is developed. Furhat employs state-of-the-art facial animation that is projected on a 3D printout of that face, and a neck to allow for head movements. Although the mask in Furhat is static, the fact that the animated face matches the design of the mask results in a physical face that is perceived to “move”.

We present studies that show how this technique renders a more intelligible, human-like and expressive face. We further present experiments in which Furhat is used as a tool to investigate properties of facial signals in situated interaction.

Furhat is built to study, implement, and verify models of situated and multiparty, multimodal Human-Machine spoken dialogue, a study that requires that the face is physically situated in the interaction environment rather than in a two-dimensional screen. It also has received much interest from several communities, and been showcased at several venues, including a robot exhibition at the London Science Museum. We present an evaluation study of Furhat at the exhibition where it interacted with several thousand persons in a multiparty conversation. The analysis of the data from the setup further shows that Furhat can accurately regulate multiparty interaction using gaze and head movements.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. p. xxvi, 96
Series
Trita-CSC-A, ISSN 1653-5723 ; 2012:15
Keywords
Avatar, Speech Communication, Facial animation, Nonverbal, Social, Robot, Human-like, Face-to-face, Prosody, Pitch, Prominence, Furhat, Gaze, Head-pose, Dialogue, Interaction, Multimodal, Multiparty
National Category
Human Computer Interaction
Research subject
SRA - ICT
Identifiers
urn:nbn:se:kth:diva-105605 (URN)978-91-7501-551-4 (ISBN)
Public defence
2012-12-07, F3, Lindstedtsvägen 26, KTH, Stockholm, 13:30 (English)
Opponent
Supervisors
Note

QC 20121123

Available from: 2012-11-23 Created: 2012-11-22 Last updated: 2022-06-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Al Moubayed, SamerSkantze, Gabriel

Search in DiVA

By author/editor
Al Moubayed, SamerSkantze, Gabriel
By organisation
Speech Communication and Technology
Human Computer Interaction

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 1450 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf