The problem of door opening is fundamental for robots operating in domesticenvironments. Since these environments are generally unstructured, a robot must deal withseveral types of uncertainties associated with the dynamics and kinematics of a door to achievesuccessful opening. The present paper proposes a dynamic force/velocity controller which usesadaptive estimation of the radial direction based on adaptive estimates of the door hinge’sposition. The control action is decomposed into estimated radial and tangential directions,which are proved to converge to the corresponding actual values. The force controller usesreactive compensation of the tangential forces and regulates the radial force to a desired smallvalue, while the velocity controller ensures that the robot’s end-effector moves with a desiredtangential velocity. The performance of the control scheme is demonstrated in simulation witha 2 DoF planar manipulator opening a door.
QC 20121217