We present a complexity reduction algorithm for a family of parameter-dependent linear systems when the system parameters belong to a compact semi-algebraic set. This algorithm potentially describes the underlying dynamical system with fewer parameters or state variables. To do so, it minimizes the distance (i.e., $H_\infty$-norm of the difference) between the original system and its reduced version. We present a sub-optimal solution to this problem using sum-of-squares optimization methods. We present the results for both continuous-time and discrete-time systems. Lastly, we illustrate the applicability of our proposed algorithm on numerical examples.
QC 20131105