kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Online power transformer diagnostics using multiple modes of microwave radiation to reconstruct winding conductor locations
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.ORCID iD: 0000-0003-0369-7520
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering.ORCID iD: 0000-0001-9241-8030
2014 (English)In: Inverse Problems in Science and Engineering, ISSN 1741-5977, E-ISSN 1741-5985, Vol. 22, no 1, p. 84-95Article in journal (Refereed) Published
Abstract [en]

A novel approach to diagnostics of transformer winding deformations, caused by mechanical forces from short-circuit currents, is presented. We employ a simple model of a transformer as a two-dimensional parallel plate waveguide. The upper plate represents the transformer tank wall and the lower plate represents the iron core which carries the magnetic flux. Between the two plates, we model the transformer winding by a set of parallel conductors. We utilize commercial simulation software to simulate the generation and measurement of microwave radiation at both ends of the winding structure. The radiation interacts with the metallic structures in the model waveguide. The measured responses from the model waveguide are expected to be sensitive to mechanical deformations of the transformer winding. We use conventional waveguide theory to solve the direct propagation problem, and an optimization method to solve the inverse problem. In particular, we determine the locations of winding segments, and obtain a good agreement between reconstructed and true conductor positions.

Place, publisher, year, edition, pages
2014. Vol. 22, no 1, p. 84-95
Keywords [en]
cylindrical windings, inverse problem, multiple modes, power transformers
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-129762DOI: 10.1080/17415977.2013.827182ISI: 000328245900007Scopus ID: 2-s2.0-84890570369OAI: oai:DiVA.org:kth-129762DiVA, id: diva2:653521
Funder
Swedish Energy Agency, 34146-1
Note

QC 20140122

Available from: 2013-10-04 Created: 2013-10-04 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Online power transformer diagnostics using multiple modes of microwave radiation
Open this publication in new window or tab >>Online power transformer diagnostics using multiple modes of microwave radiation
2013 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In the present thesis, we propose and investigate a new approach to diagnose the effects of the various degradation mechanisms, including thermal degradation at hot spots, winding deformations due to the mechanical forces from short circuit currents, partial discharges due to local electric field surges, and increased moisture levels in the cellulose insulation due to decomposition, that affect electric power transformers during their normal operation in an electric power grid.

Although the proposed diagnostics method can in principle be used to detect various degradation mechanisms mentioned above, we focus in the present thesis on mechanical deformations of transformer winding structures. Such mechanical deformations are most often caused by mechanical forces from short circuit currents, but they may also be caused by initial manufacturing errors and inconsistencies not detected by the power transformers’ suppliers quality assurance processes.

We model a transformer winding surrounded by the transformer-tank wall and the magnetic core as a two-dimensional parallel plate waveguide or as a three-dimensional coaxial waveguide, where one metallic boundary (plate or cylinder) represents the wall of the transformer tank and the other metallic boundary (plate or cylinder) represents the iron core that conducts the magnetic flux. In between there is a set of parallel or coaxial conductors representing the winding segments.

The new principle proposed in the present thesis is to insert a number of antennas into a transformer tank to radiate and measure microwave fields interacting with metallic structures and insulation. The responses from the emitted microwave radiation are expected to be sensitive to material properties that reflect the changes caused by any harmful deterioration processes mentioned above. Specifically, we investigate the mechanical deformations of transformer winding structures by determining the locations of the individual winding segments or turns, using measurements of the scattered fields at both ends of the winding structure. We solve the propagation problem using conventional waveguide theory, including mode-matching and cascading techniques.

The inverse problem is solved using modified steepest-descent optimization methods. The optimization model is tested by comparing our calculated scattering data with synthetic measurement data generated by the commercial program HFSS.

A good agreement is obtained between the calculated and measured positions of winding segments for a number of studied cases, which indicates that the diagnostics method proposed in the present thesis couldbe potentially useful as a basis for the design of a future commercial on-line winding monitoring device. However, further development of the theoretical analysis of a number of typical winding deformations, improvements of the optimization algorithms and a practical study with measurements on an actual power transformer structure are all needed to make an attempt to design a commercial winding monitoring device feasible.

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2013. p. x, 93
Series
TRITA-EE, ISSN 1653-5146 ; 2013:033
Keywords
inverse problem; multiple modes; power transformers
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-129766 (URN)978-91-7501-832-4 (ISBN)
Presentation
2013-10-25, H1, Teknikringen 33, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20131007

Available from: 2013-10-07 Created: 2013-10-04 Last updated: 2022-10-24Bibliographically approved
2. Perturbation approach to reconstructions of boundary deformations in waveguide structures
Open this publication in new window or tab >>Perturbation approach to reconstructions of boundary deformations in waveguide structures
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we develop inverse scattering algorithms towards the ultimate goal of online diagnostic methods. The aim is to detect structural changes inside power transformers and other major power grid components, like generators, shunt reactors etc. Power grid components, such as large power transformers, are not readily available from the manufacturers as standard designs. They are generally optimized for specific functions at a specific position in the power grid. Their replacement is very costly and takes a long time.

Online methods for the diagnostics of adverse changes of the mechanical structure and the integrity of the dielectric insulation in power transformers and other power grid components, are therefore essential for the continuous operation of a power grid. Efficient online diagnostic methods can provide a real-time monitoring of mechanical structures and dielectric insulation in the active parts of power grid components. Microwave scattering is a candidate that may detect these early adverse changes of the mechanical structure or the dielectric insulation. Upon early detection, proper actions to avoid failure or, if necessary, to prepare for the timely replacement of the damaged component can be taken. The existing diagnostic methods lack the ability to provide online reliable information about adverse changes inside the active parts. More details about the existing diagnostic methods, both online and offline, and their limitations can be found in the licentiate thesis preceding the present PhD thesis.

We use microwave scattering together with the inverse scattering algorithms, developed in the present work, to reconstruct the shapes of adverse mechanical structure changes. We model the propagation environment as a waveguide, in which measurement data can be obtained only at two ends (ports). Since we want to detect the onset of some deformation, that only slightly alters the scattering situation (weak scattering), we have linearized the inverse problem with good results. We have calculated the scattering parameters of the waveguide in the first-order perturbation, where they have linear dependencies on the continuous deformation function. A linearized inverse problem with a weak scattering assumption typically results in an ill-conditioned linear equation system. This is handled using Tikhonov regularization, with the L-curve method for tuning regularization parameters.

We show that localized one-dimensional and two-dimensional shape deformations, for rectangular and coaxial waveguide models, are efficiently reconstructed using the inverse scattering algorithms developed from the first principles, i.e. Maxwell’s theory of electromagnetism. An excellent agreement is obtained between the reconstructed and actual deformation shapes for a number of studied cases. These results show that it is possible to use the inverse algorithms, developed in the present thesis, as a theoretical basis for the design of a future diagnostic device. As a part of the future work, it remains to experimentally verify the results obtained so far, as well as to further study the theoretical limitations posed by linearization (first-order perturbation theory) and by the assumption of the continuity of the metallic waveguide boundaries and their deformations.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology: KTH Royal Institute of Technology, 2016. p. xii, 53
Series
TRITA-EE, ISSN 1653-5146 ; 2015:109
Keywords
inverse problems, waveguides, microwaves, perturbation theory
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-180429 (URN)978-91-7595-801-9 (ISBN)
Public defence
2016-02-12, F3, Lindstedtsvägen 26, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20160119

Available from: 2016-01-19 Created: 2016-01-13 Last updated: 2022-10-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Dalarsson, MarianaNorgren, Martin

Search in DiVA

By author/editor
Dalarsson, MarianaMotevasselian, AlirezaNorgren, Martin
By organisation
Electromagnetic Engineering
In the same journal
Inverse Problems in Science and Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 238 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf