kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of a heavy duty nozzle coking test
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.ORCID iD: 0000-0002-4243-7134
Show others and affiliations
2013 (English)In: SAE Technical Papers, 2013, Vol. 11Conference paper, Published paper (Refereed)
Abstract [en]

The diesel engine is still one of the most common and most efficient mobile energy converters. Nevertheless, it is troubled by many problems, one of them being nozzle coking. This is not a new problem; however, due to the introduction of more advanced injection systems and a more diverse fuel matrix, including biofuels, the problem has become more complex. The nozzle holes are also much narrower today than when the problem first appeared and are therefore more sensitive to coking. Two CEC sanctioned coking tests exist for diesel engines, but no universally accepted test for heavy duty engines. In this paper, tests have been performed with B10 doped with 1 ppm zinc on a single cylinder engine, based on a heavy duty engine, with the purpose to develop a simple accelerated coking test. To have relevance to real usage, the test was based on real engine load points from a high power Euro V engine calibration. The coking propensity was studied in an engine speed sweep at max load. Based on this, a repeatable, convenient, single load point, 6 hour test with a one hour soak time in the middle, that managed to produce significant coking, was established. The average nozzle temperature was measured to around 255 °C with a thermocouple instrumented injector. Coking was evaluated based on the measured power loss during the tests and validated in a flow rig were the nozzle was disassembled from the injector and the flow was measured separately before and after the coking tests to isolate the effects of nozzle coking. Since the start of the tests are is of major importance, to condition the engine is very important. Running the engine on half load was concluded not to have significant effect on nozzle coking. It was also found that overnight engine soak lead to on average an increase in power output of around 1.2 % and that shorter soak periods did not significantly influence the deposit build up.

Place, publisher, year, edition, pages
2013. Vol. 11
Series
SAE Technical Papers, ISSN 0148-7191
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-139138DOI: 10.4271/2013-01-2674Scopus ID: 2-s2.0-84890348747OAI: oai:DiVA.org:kth-139138DiVA, id: diva2:685279
Conference
SAE/KSAE 2013 International Powertrains, Fuels and Lubricants Meeting, FFL 2013; Seoul, South Korea, 21-23 October 2013
Note

QC 20140109

Available from: 2014-01-09 Created: 2014-01-07 Last updated: 2024-03-15Bibliographically approved
In thesis
1. On Alternative Fuels for Internal Combustion Engines: A study of biodiesel, gaseous methane and methanol
Open this publication in new window or tab >>On Alternative Fuels for Internal Combustion Engines: A study of biodiesel, gaseous methane and methanol
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

 This thesis covers some of the environmental impacts of internalcombustion engines running on alternative fuels. The focus of thestudies conveyed is the reduction of greenhouse gases and particleemissions, as these two factors are of great importance for the pathsthat road transportation is facing. The main area covered is heavyduty engines for truck applications, but a study on methane fuel andhow gaseous methane can be used to reduce CO2 emissions in lightduty engines is also included. The literature studies executed inrelation to the different studies and publications are based on aholistic perspective of the difficulties of implementing alternativefuels for a heavy duty application, mainly in the perspective ofgaseous fuels.The experimental studies have been performed as studies in singlecylinder engine test cell setups. The areas of investigation were:- Accelerated testing of Biodiesel injector fouling, whichcould increase the particle and CO2 emissions from theengine- Using methane to potentially reduce CO2 by up to 50%compared to gasoline in a light duty application- In-cylinder flow optimisation to improve combustionstability in a heavy duty engine and thereby lowering theCO2-emissions.- Particle emissions originating from the entrainment oflubricating oil in the combustion chamber and how reducedoil ash content can affect the particle emissions from theengine.The outcome of these studies showed that it was possible to createan accelerated test procedure capable of fouling the injector in justone day. The reduction in CO2 for the light duty engine running onmethane was possible to reach close to 50%. This was done byincreasing the compression ratio, advancing the spark anddownsizing the engine.IIThe heavy duty methane engine study indicates that there is anoptimum combination between the design parameters in thecombustion chamber in order to be able to control the combustionspeed. The relation between particle emission and engine oil ashcontent showed that the entrainment of oil into the combustionchamber made the largest impact, before the ash content causedfurther impact on particle emissions.This work is to be seen as insights into areas in which the alternativefuels may contribute to reduce the environmental impact, mainly ofCO2, of the internal combustion engine. The vision is that it will helpto provide for a greener tomorrow and a better future for many. 

Abstract [sv]

 Denna avhandling behandlar delar av den miljöpåverkan somförbränningsmotorer drivna med alternativa bränslen kan orsaka.Fokus på de genomförda studierna är minskandet av utsläpp avväxthusgaser och partikelemissioner, då dessa två faktorer har storpåverkan för den riktning vägtransporter står inför. Huvudområdetför denna avhandling är tunga motorer för lastbilsapplikationer,men en studie av hur metangas användas för att minskaCO2-utsläpp från personbilsmotorer ingår också. Litteraturstudiensom utförts till bilagda rapporter och publikationer är baserade påett holistiskt perspektiv över utmaningarna kopplade tillimplementeringen av alternativa bränslen på tunga applikationer,med ett huvudperspektiv mot gasformiga metanbränslen.De experimentella studierna är utförda som studier påsingelcylindermotorer i motorprovcell. De undersökta områdena är:- Accelererad provning av kontaminering av dieselinjektorerfrån Biodiesel, vilken annars kan leda till ökade partikel- ochCO2-utsläpp- Användande av metan för att potentiellt sänka CO2-utsläppmed upp till 50% jämfört med bensin i enpersonbilsapplikation- Flödesoptimering i cylindern för att förbättra förbränningeni en tung motorapplikation och därmed sänka CO2 utsläppen- Partikelemissioner uppkommer genom oljeinträngning iförbränningsrummet, samt hur en reduktion av askhalten ioljan kan påverka de totala partikelemissionerna frånmotorn.Resultaten från dessa studier visar att det är möjligt att skapa enaccelererad provmetod för att skapa kontamineringar efter endasten dags motorprov. Minskningen av CO2 från personbilsmotorn påmetan visade att det var möjligt att minska utsläppen med upptill 50% genom att öka kompressionsförhållandet, avanceratändningstillfället och downsizea motorn.IVStudierna på den tunga motorapplikationen indikerar att det finnsen optimerad kombination mellan designparametrarna iförbränningsrummet för att kontrollera förbränningshastighetenför metanförbränning. Relationen mellan partikelemissioner ochaskhalten visar att oljeinträngningen i förbränningsrummet hadestörst inverkan och att askhalten bidrog ytterligare tillpartikelemissionerna.Detta arbete ska ses som insikter i området där alternativa bränslenkan bidra till att minska miljöpåverkan från förbränningsmotorn.Visionen är att detta arbete kan bidra till en grönare morgondag ochen bättre framtid för många. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 201
Series
TRITA-ITM-AVL ; 2022:36
Keywords
Gaseous methane combustion, spark ignition, single cylinder research engine, particle number, particle emissions, oil ash content, CO2, Green House Gases, engine testing, engine development, emissions, combustion chamber design, injector fouling, environmental impact, road transportation
National Category
Mechanical Engineering
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-321526 (URN)978-91-8040-414-3 (ISBN)
Public defence
2022-12-09, F3 https://kth-se.zoom.us/webinar/register/WN_nVuf7vvmSCCLwWgEgIPqag, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 35716-1Swedish Energy Agency, 39976-1Swedish Energy Agency, P44933-1
Available from: 2022-11-18 Created: 2022-11-17 Last updated: 2022-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Risberg, Per A.Adlercreutz, Ludvig

Search in DiVA

By author/editor
Risberg, Per A.Adlercreutz, LudvigGómez Aguilera, MiguelStensiö, LarsÅngström, Hans-Erik
By organisation
Internal Combustion Engines
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 269 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf