kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Natural Resource Potential of Macroalgae Harvesting in the Baltic Sea-Case Study Trelleborg, Sweden
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0003-1949-4891
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0003-4181-0571
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0001-5817-1417
Show others and affiliations
2013 (English)In: Global Challenges in Integrated Coastal Zone Management, John Wiley & Sons, 2013, p. 69-84Chapter in book (Other academic)
Abstract [en]

The interest in harvesting biomass from the Baltic Sea has increased in recent years. However, there is a lack of available data on macroalgae biomass and of cost-effective methods for site-specific quantification of macroalgae. In this study, macroalgae biomass has been quantified in Trelleborg and thus the nutrient reduction that could be achieved by harvesting on a regional scale. The biomass was estimated on the basis of existing inventories of macroalgae, photic zone distribution and bottom substrata. An independent model for estimating the potential of macroalgae growth was applied where factors affecting the growth of macroalgae, for example nutrients, light and temperature, were considered. The estimated summer stock of macroalgae biomass along the 58 km coastal stretch in Trelleborg amounts to 19 000 tonnes dry weight (dwt) red filamentous algae. If 10-30% of this summer stock were to be harvested, a nutrient reduction of 50-150 t of nitrogen could be achieved. The model for estimating biomass proved promising and worthy of further investigation.

Place, publisher, year, edition, pages
John Wiley & Sons, 2013. p. 69-84
Keywords [en]
Algae biomass, Biomass quantification, Filamentous biomass, Macroalgae harvesting, Natural resource potential
National Category
Ecology
Identifiers
URN: urn:nbn:se:kth:diva-140103DOI: 10.1002/9781118496480.ch6Scopus ID: 2-s2.0-84889496130OAI: oai:DiVA.org:kth-140103DiVA, id: diva2:688679
Note

Part of ISBN 9780470657560

QC 20250214

Available from: 2014-01-17 Created: 2014-01-17 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Sustainability Aspects of Bioenergy and Nutrient Recovery from Marine Biomass: Baltic Sea case studies
Open this publication in new window or tab >>Sustainability Aspects of Bioenergy and Nutrient Recovery from Marine Biomass: Baltic Sea case studies
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Coastal areas around the world are experiencing environmental problems such as climate change and eutrophication. These, in turn, lead to emerging challenges with excessive amounts of biomass that impact coastal communities. Developing utilisation strategies for marine biomass is therefore highly relevant and forms part of the blue growth research field. In response to environmental concerns, as a waste management strategy and as part of blue growth research initiatives, several Baltic Sea coastal projects have been initiated in recent years to study utilisation of maritime biomass. However, the sustainability of these utilisation strategies has not been critically appraised. Therefore, the work presented in this thesis explored some key sustainability aspects of two Baltic Sea case studies utilising common reed (Kalmar, Sweden) and mass-occurring filamentous macroalgae (Trelleborg, Sweden) for biogas and biofertiliser recovery. Energy analyses suggested that both case studies could provide a positive energy balance and have the potential to achieve nutrient recovery. Moreover, a contingent valuation study in Trelleborg demonstrated considerable welfare benefits of biomass utilisation. These findings indicate that marine biomass utilisation strategies highlight potential to contribute to environmental and welfare benefits of these coastal communities.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. p. xii, 57
Series
TRITA-IM, ISSN 1402-7615 ; 2014:03
National Category
Environmental Sciences
Research subject
Industrial Ecology
Identifiers
urn:nbn:se:kth:diva-156377 (URN)978-91-7595-365-6 (ISBN)
Public defence
2014-12-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Formas, Grant number 229-2009-468
Note

QC 20141126

Available from: 2014-11-26 Created: 2014-11-26 Last updated: 2022-06-23Bibliographically approved
2. Nutrient Recovery as an Added Benefit to Harvests of Photosynthetic Marine Biomass: A Holistic Systems Perspective on Harvesting Marine Microalgae, Cyanobacteria, and Macroalgae
Open this publication in new window or tab >>Nutrient Recovery as an Added Benefit to Harvests of Photosynthetic Marine Biomass: A Holistic Systems Perspective on Harvesting Marine Microalgae, Cyanobacteria, and Macroalgae
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

As a result of increasing environmental burdens from anthropogenic activities andresource scarcity, interest for the development of solutions utilizing photosyntheticmarine biomass has also been increasing in both academia and industries. Medium tolarge scale production and harvest of photosynthetic marine biomass have beenpracticed to achieve numerous services, including improving tourism industries,production of biofuels, and production of food/feed. However, few studies haveevaluated the potential for nutrient recovery as an added benefit to the aforementionedservices and the potential environmental burdens of such solutions from a holisticsystems perspective. This thesis, therefore, sought to determine the nutrient recoverypotential of harvesting photosynthetic marine biomass at industrial scales whileassessing the environmental burdens from a holistic systems perspective. Techniquesinvolving life cycle inventory and analysis, input-output analysis, growth modellingand experimentation, energy analysis, and assessment of greenhouse gas emissionsfrom a life cycle perspective were used to assess the potential environmental burdensof large scale harvest of photosynthetic marine biomass.This study employed five real world case studies of five different photosynthetic marinebiomass species at various geographical locations across the globe. Each case wasassessed to determine the potential to recover nutrients while evaluating the potentialenvironmental burdens from an energy and greenhouse gas perspective. Each casecontains unique specific details and therefore methods applied were case specific.Results showed that nutrient recovery potential existed in most cases with the exceptionof one case. Cases evaluated for their potential environmental burdens showed thatlarge scale harvest of photosynthetic marine biomass is resource intensive regardless ofspecies but showed mixed results from an energy perspective. The key findings of thisthesis were that a) the potential for nutrient recovery was estimated in both large scalecultivation and large scale wild harvest of photosynthetic marine biomass, b) from anenergy and biomass harvesting perspective, the viability of industrial harvests ofphotosynthetic marine biomass were found for both large scale cultivations and wildharvesting of biomass blooms, and c) scale of operations is an important factor towardsevaluating the environmental performance of photosynthetic marine biomassproduction systems.

Abstract [sv]

Som ett resultat av en ökande miljöbelastning från antropogenaktivitet och knapphet på resurser, så har intresset för utveckling av lösningar medfotosyntetisk marin biomassa också ökat i både akademi och industri. Produktion ochskörd av fotosyntetisk marin biomassa i medelstor till stor skala har praktiserats för attuppnå många tjänster, inklusive förbättring av turistnäringar, produktion avbiodrivmedel och livsmedels- och foderproduktion. Men få studier har utvärderatpotentialen för näringsåtervinning som en extra fördel för de nämnda tjänsterna och denpotentiella miljöbelastningen för sådana lösningar ur ett holistiskt systemperspektiv.Denna avhandling försökte därför fastställa näringsåtervinningspotentialen för skörd avfotosyntetisk marin biomassa på industriell skala, samtidigt som miljöbelastningenbedömdes ur ett systemperspektiv. Tekniker som involverar livscykelinventering ochanalys, input-output-analys, tillväxtmodellering och experiment, energianalys ochutvärdering av växthusgasutsläpp ur ett livscykelperspektiv användes för att bedömaden potentiella miljöbelastningen för storskalig skörd av fotosyntetisk marin biomassa.I denna studie användes fem verkliga fallstudier av fem olika fotosyntetiska marinaarter som kan producerar biomassa på olika geografiska platser över hela världen. Varjefall bedömdes för att bestämma potentialen för att återvinna näringsämnen samtidigtsom den potentiella miljöbelastningen utvärderades ur ett energi- ochväxthusgasperspektiv. Varje fall innehåller unika specifika detaljer och därför användesmetoder som var specifika för varje fallstudie. Resultaten visade att potentialen föråterhämtning av näringsämnen fanns i de flesta fall med undantag för ett fall. Fall somutvärderades för deras potentiella miljöbelastningar visade att storskalig skörd avfotosyntetisk marin biomassa är resurskrävande oavsett art men visade blandaderesultat ur energiperspektiv. De viktigaste resultaten från denna avhandling var att a)potentialen för näringsåtervinning uppskattades i både storskalig odling och storskaligvild skörd av fotosyntetisk marin biomassa, b) möjligheten för industriell skörd avfotosyntetisk marin biomassa hittades för både storskalig odling och vild skörd avbiomassa, och c) skalan är en viktig faktor för att utvärdera miljöprestanda förfotosyntetiska marina system för biomassaproduktion.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 43
National Category
Environmental Sciences
Research subject
Industrial Ecology
Identifiers
urn:nbn:se:kth:diva-261367 (URN)978-91-7873-254-8 (ISBN)
Public defence
2019-10-28, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20191008

Available from: 2019-10-08 Created: 2019-10-04 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Risén, EmmaPechsiri, Joseph SanthiMalmström, MariaBrandt, NilsGröndahl, Fredrik

Search in DiVA

By author/editor
Risén, EmmaPechsiri, Joseph SanthiMalmström, MariaBrandt, NilsGröndahl, Fredrik
By organisation
Industrial Ecology
Ecology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 414 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf