kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Reducing the Number of Turbine Starts in Concentrating Solar Power Plants through the Integration of Thermal Energy Storage
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Concentrated Solar Power)ORCID iD: 0000-0002-7804-667X
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Concentrated Solar Power)ORCID iD: 0000-0002-3458-2112
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology. (Concentrated Solar Power)ORCID iD: 0000-0001-7193-5303
2015 (English)In: Journal of solar energy engineering, ISSN 0199-6231, E-ISSN 1528-8986, Vol. 137, no 2Article in journal (Refereed) Published
Abstract [en]

The operation of steam turbine units in solar thermal power plants is very different than in conventional base-load plants. Due to the variability of the solar resource, much higher frequencies of plant start-ups are encountered. This study provides an insight to the influence of thermal energy storage (TES) integration on the typical cycling operation of solar thermal power plants. It is demonstrated that the integration of storage leads to significant reductions in the annual number of turbine starts and is thus beneficial to the turbine lifetime. At the same time, the effects of storage integration on the electricity costs are analyzed to ensure that the designs remain economically competitive. Large storage capacities, can allow the plant to be shifted from a daily starting regime to one where less than 20 plant starts occur annually. Additionally, the concept of equivalent operating hours (EOHs) is used to further analyze the direct impact of storage integration on the maintenance planning of the turbine units.

Place, publisher, year, edition, pages
ASME Press, 2015. Vol. 137, no 2
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-148156DOI: 10.1115/1.4028004ISI: 000348145600003Scopus ID: 2-s2.0-84904977331OAI: oai:DiVA.org:kth-148156DiVA, id: diva2:735802
Note

Qc 20140925

Available from: 2014-08-01 Created: 2014-08-01 Last updated: 2024-03-18Bibliographically approved
In thesis
1. A Techno-Economic Framework for the Analysis of Concentrating Solar Power Plants with Storage
Open this publication in new window or tab >>A Techno-Economic Framework for the Analysis of Concentrating Solar Power Plants with Storage
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Concentrating solar power plants can integrate cost-effective thermal energy storage systems and thereby supply controllable power on demand, an advantage against other renewable technologies. Storage integration allows a solar thermal power plant to increase its load factor and to shift production to periods of peak demand. It also enables output firmness, providing stability to the power block and to the grid. Thus, despite the additional investment, storage can enhance the performance and economic viability of the plants.

However, the levelized cost of electricity of these plants yet remains higher than for other technologies, so projects today are only viable through the provision of incentives or technology-specific competitive bid tenders. It is the variability of the solar resource, the myriad roles that storage can assume, and the complexity of enhancing the synergies between the solar field, the storage and the power block, what makes the development of adequate policy instruments, design and operation of these plants a challenging process.

In this thesis a comprehensive methodology for the pre-design and analysis of concentrating solar power plants is presented. The methodology is based on a techno-economic modeling approach that allows identifying optimum trade-off curves between technical, environmental, and financial performance indicators. A number of contemporary plant layouts and novel storage and hybridization concepts are assessed to identify optimum plant configurations, in terms of component size and storage dispatch strategies.

Conclusions highlight the relevance between the sizing of key plant components, the operation strategy and the boundaries set by the location. The interrelation between critical performance indicators, and their use as decisive parameters, is also discussed. Results are used as a basis to provide recommendations aimed to support the decision making process of key actors along the project development value chain of the plants. This research work and conclusions are primarily meant to set a stepping stone in the research of concentrating solar power plant design and optimization, but also to support the research towards understanding the value of storage in concentrating solar power plants and in the grid.

Abstract [sv]

Koncentrerad solkraft erbjuder möjligheten att integrera kostnadseffektiv termisk energilagring och därmed behovsstyrd kraftkontroll. Detta är en viktig fördel jämfört med andra förnybara energiteknologier. Lagringsintegration tillåter solkraftsanläggningar att öka sin lastfaktor och skifta produktion till tider med största efterfrågan. Vidare möjliggör lagring fast elproduktion vilket leder till förbättrad nät- och kraftturbinstabilitet. Därför kan termisk lagring öka anläggningsprestanda och ekonomiskt värde trots ökande initiala kapitalkostnader.

I termer av specifik elproduktionskostnad (LCOE) ligger koncentrerade solkraftsanläggningar med lagring fortfarande högre än andra kraftteknologier och anläggningsprojekt blir endast lönsamma genom subventionsmodeller eller teknologispecifika konkurrensutsatta anbudsförfaranden. Att hitta adekvata policylösningar och optimala design och operationsstrategier är en utmanande process eftersom det gäller att hitta rätt balans mellan variabel solinstrålning, lagring av energi och tid för produktion genom optimal design och operation av solmottagarfält, kraftblock och lagringskapacitet.

I denna avhandling presenteras en omfattande metodik för pre-design och analys av koncentrerande solkraftverk. Metodiken baseras på en tekno-ekonomisk modelleringsansats som möjliggör identifiering av optimala avvägningssamband för tekniska, ekonomiska och miljöprestanda indikatorer. Metodiken tillämpas på ett antal moderna anläggningslayouter  och lagrings- och hybridiseringskoncept för att identifiera optimal kraftanläggningsdesign i termer av komponentprestanda och lagringsanvändningsstrategier. I slutsatsen poängteras relevansen av att hitta rätt storlek på nyckelkomponenter i relation till lagringsstrategi och randvillkoren som ges av konstruktionsläget för optimal ekonomisk och miljömässig prestanda. Resultaten används för att formulera rekommendationer till nyckelaktörer i beslutsprocessen genom hela kraftanläggningens värdekedja från politisk beslutsfattare till anläggningsingenjör. Forskningen och slutsatserna i detta arbete skall i första hand ta ett steg framåt för optimering och design av solkraftsanläggningar men även tillhandahålla en metodik för utvärdering av lagringslösningar och dess specifika värde för solkraftsanläggningar och elnätet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. p. 239
Series
TRITA-KRV, ISSN 1100-7990 ; 2016:01
Keywords
Concentrating solar power, thermal energy storage, techno-economic analysis, Termisk solkraft, termisk energilagring, techno-eknomiska analys
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
urn:nbn:se:kth:diva-191339 (URN)978-91-7729-086-5 (ISBN)
External cooperation:
Public defence
2016-09-23, M2, Brinellvägen 64, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20160829

Available from: 2016-08-29 Created: 2016-08-29 Last updated: 2022-09-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://solarenergyengineering.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4028004

Authority records

Guedez, RafaelSpelling, JamesLaumert, Björn

Search in DiVA

By author/editor
Guedez, RafaelSpelling, JamesLaumert, Björn
By organisation
Heat and Power Technology
In the same journal
Journal of solar energy engineering
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 876 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf