For compressed sensing over arbitrarily connected networks, we consider the problem of estimating underlying sparse signals in a distributed manner. We introduce a new signal model that helps to describe inter-signal correlation among connected nodes. Based on this signal model along with a brief survey of existing greedy algorithms, we develop distributed greedy algorithms with low communication overhead. Incorporating appropriate modifications, we design two new distributed algorithms where the local algorithms are based on appropriately modified existing orthogonal matching pursuit and subspace pursuit. Further, by combining advantages of these two local algorithms, we design a new greedy algorithm that is well suited for a distributed scenario. By extensive simulations we demonstrate that the new algorithms in a sparsely connected network provide good performance, close to the performance of a centralized greedy solution.
QC 20141016