Let f : T -> R be a Morse function of class C-2 with exactly two critical points, let omega is an element of T be Diopharitine, and let lambda > 0 be sufficiently large (depending on f and omega). For any value of the parameter E is an element of R, we make a careful analysis of the dynamics of the skew-product map Phi(E)(theta, r) = (theta + omega, lambda f(theta) - E - 1/r), acting on the "torus" T x (R) over cap. Here, (R) over cap denotes the projective space R boolean OR {infinity}. The map Phi(E) is intimately related to the quasi-periodic Schrodinger cocycle (omega, A(E)) : T x R-2 -> T x R-2, (theta, x) -> (theta + omega, A(E)(theta) . x), where A(E) : T -> SL(2, R) is given by A(E)(theta) = ((0)(-1) 1(lambda f(theta) - E)), E is an element of R. More precisely, (omega, A(E)) naturally acts on the space T x (R) over cap, and Phi(E) is the map thus obtained. The cocycle (omega, A(E)) arises when investigating the eigenvalue equation H(theta)u = Eu, where H-theta is the quasi-periodic Schrodinger operator (H(theta)u)(n) = -(u(n+1) + u(n-1)) + lambda f (theta + (n - 1)omega)u(n), (1) The (maximal) Lyapunov exponent of the Schrodinger cocycle (omega, A(E)) is greater than or similar to log lambda, uniformly in E is an element of R. This implies that the map PE has exactly two ergodic probability measures for all E is an element of R; (2) If E is on the edge of an open gap in the spectrum sigma(H), then there exist a phase 0 is an element of T and a vector u is an element of l(2)(Z), exponentially decaying at +/-infinity, such that H(theta)u = Eu;acting on the space l(2) (Z). It is well known that the spectrum of H-theta, sigma(H), is independent of the phase theta is an element of T. Under our assumptions on f, omega and lambda, Sinai (in J Stat Phys 46(5-6):861-909, 1987) has shown that sigma(H) is a Cantor set, and the operator H-theta has a pure-point spectrum, with exponentially decaying eig,enfunctions, for a.e. theta is an element of T The analysis of Phi(E) allows us to derive three main results: (3) The map Phi(E) is minimal iff E E is an element of sigma(H)\ {edges of open gaps}. In particular, Phi(E) is minimal for all E is an element of R for which the fibered rotation number alpha(E) associated with (omega, A(E)) is irrational with respect to omega.
2015. Vol. 16, no 4, p. 961-1031