We show a method to sparsify the speech input that improves the robustness of an automatic speech recognizer. The proposed scheme is added to the system as a preprocessing module prior to the acoustic feature extraction. The preprocessing module passes the input speech signal through a linear predictive (LP) analysis filter and enforces sparsity in the LP residue domain. The sparsified prediction residue finally is filtered to generate the speech signal for computing a sequence of conventional feature vectors used in automatic speech recognition (ASR). Using standard feature vectors, our experiments show that sparsification in LP residue domain improves robustness in ASR performance.
QC 20150528