Open this publication in new window or tab >>Show others...
2013 (English)In: Biotechnology Journal, ISSN 1860-6768, E-ISSN 1860-7314, Vol. 8, no 1, p. 139-145Article in journal (Refereed) Published
Abstract [en]
We have previously generated an affibody molecule for the disease-associated amyloid beta (A beta) peptide, which has been shown to inhibit the formation of various A beta aggregates and revert the neurotoxicity of A beta in a fruit fly model of Alzheimer's disease. In this study, we have investigated a new bacterial display system for combinatorial protein engineering of the A beta-binder as a head-to-tail dimeric construct for future optimization efforts, e.g. affinity maturation. Using the bacterial display platform, we have: (i) demonstrated functional expression of the dimeric binder on the cell surface, (ii) determined the affinity and investigated the pH sensitivity of the interaction, (iii) demonstrated the importance of an intramolecular disulfide bond through selections from a cell-displayed combinatorial library, as well as (iv) investigated the effects from rational truncation of the N-terminal part of the affibody molecule on surface expression level and A beta binding. Overall, the detailed engineering and characterization of this promising A beta-specific affibody molecule have yielded valuable insights concerning its unusual binding mechanism. The results also demonstrated that our bacterial display system is a suitable technology for future protein engineering and characterization efforts of homo- or heterodimeric affinity proteins.
Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2013
Keywords
Affibody molecules, Alzheimer's disease, Amyloid beta, Bacterial display, Combinatorial protein engineering
National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:kth:diva-111860 (URN)10.1002/biot.201200228 (DOI)000312989500022 ()22987778 (PubMedID)2-s2.0-84871749509 (Scopus ID)
Funder
Swedish Research Council, 2009-5758VINNOVA, 2009-00179
Note
QC 20130207
2013-01-142013-01-142025-02-20Bibliographically approved