kth.sePublications
System disruptions
We are currently experiencing disruptions on the search portals due to high traffic. We are working to resolve the issue, you may temporarily encounter an error message.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identifying ways of closing the metal flow loop in the global mobile phone product system: A system dynamics modeling approach
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0002-2459-0311
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0002-7717-600X
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0002-9215-0166
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Industrial Ecology.ORCID iD: 0000-0002-4530-3414
Show others and affiliations
2016 (English)In: Resources, Conservation and Recycling, ISSN 0921-3449, E-ISSN 1879-0658, p. 65-76Article in journal (Refereed) Published
Abstract [en]

In the past few decades, e-waste has emerged as one of the fastest growing and increasingly complex waste flows world-wide. Within e-waste, the life cycle of the mobile phone product system is particularly important because of: (1) the increasing quantities of mobile phones in this waste flow; and (2) the sustainability challenges associated with the emerging economies of reuse, refurbishment, and export of used mobile phones. This study examined the possibilities of closing the material flow loop in the global mobile phone product system (GMPPS) while addressing the broad sustainability challenges linked to recovery of materials. This was done using an adapted system dynamics modeling approach to investigate the dominant paths and drivers for closing the metal flow loop through the concept of eco-cycle. Two indicators were chosen to define the closed loop system: loop leakage and loop efficiency. Sensitivity analysis of selected parameters was used to identify potential drivers for closing the metal flow loop. The modeling work indicated leverage for management strategies aimed at closing the loop in: (i) collection systems for used phones, (ii) mobile phone use time, and (ii) informal recycling in developing countries. By analyzing the dominant parameters, an eco-cycle scenario that could promote a closed loop system by decreasing pressures on virgin materials was formulated. Improved policy support and product service systems could synchronize growth between upstream producers and end-of-life organizations and help achieve circular production and consumption in the GMPPS. 

Place, publisher, year, edition, pages
Elsevier, 2016. p. 65-76
Keywords [en]
Closed loop, Eco-cycle, Mobile phones, System dynamics, Substance flow analysis, E-waste, End-of-life
National Category
Environmental Management
Identifiers
URN: urn:nbn:se:kth:diva-191436DOI: 10.1016/j.resconrec.2016.05.010ISI: 000381323600006Scopus ID: 2-s2.0-84975474704OAI: oai:DiVA.org:kth-191436DiVA, id: diva2:956411
Note

QC 20160901

Available from: 2016-08-30 Created: 2016-08-30 Last updated: 2025-02-10Bibliographically approved
In thesis
1. Systems Modeling Approaches to Physical Resource Management: An Industrial Ecology Perspective
Open this publication in new window or tab >>Systems Modeling Approaches to Physical Resource Management: An Industrial Ecology Perspective
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Many of the present problems that we are facing arise as unanticipated side-effects of our own actions. Moreover, the solutions implemented to solve important problems often create new problems. To avoid unintended consequences, understanding complex systems is essential in devising policy instruments and in improving environmental management. Thus, this thesis investigated systems modeling approaches to under- stand complex systems and monitor the environmental performance of management actions. The overall aim of the work was to investigate the usefulness of different systems modeling approaches in supporting environmental management. A driver- based, pressure-oriented approach was adopted to investigate systems modeling tools. Material/substance flow analysis, environmental footprinting, input-output analysis, process-based dynamic modeling, and systems dynamics modeling approaches were applied in different cases to investigate strengths and weaknesses of the tools in generating an understanding of complex systems. Three modeling and accounting approaches were also tested at different systems scales to support environmental mon- itoring. Static modeling approaches were identified as fundamental to map, account, and monitor physical resource metabolism in production and consumption systems, whereas dynamic modeling showed strengths in understanding complex systems. The results suggested that dynamic modeling approaches should be conducted on top of static analysis to understand the complexity of systems when devising and testing policy instruments. To achieve proactive monitoring, a pressure-based assessment was proposed instead of the mainstream impact/state-based approach. It was also concluded that the LCA community should shift the focus of its assessments to pressures instead of impacts. 

Abstract [sv]

Många nuvarande miljö- och utvecklingsproblem har uppstått som oförutsedda biverkningar av människans egna handlingar. De lösningar som prövats har i sin tur ofta skapat  nya problem. Det därför viktigt att förstå hur komplexa system fungerar och att utforma styrmedel och ledningssystem som minimerar risken för oönskade bieffekter. Den här avhandling har använt olika modelleringsmetoder för att öka förståelsen för komplexa system och bidra med kunskaper om hur miljöprestanda och förvaltningsåtgärder kan följas upp på ett mer effektivt sätt. Det övergripande syftet med arbetet var att undersöka användbarheten av olika modelleringsmetoder för att effektivisera den fysiska resurshanteringen i samhället. I arbetet har ett flödesbaserat och aktörsinriktat arbetssätt (pressure based and driver oriented approach) använts i modelleringen.  Material- och substansflödesanalys, miljöfotavtryck, input-output analys, processbaserad dynamisk modellering och systemdynamiska modelleringsmetoder studerades för att undersöka styrkor och svagheter hos de olika metoderna/verktygen.  Tre olika modellerings- och redovisningsmetoder för att stödja miljöövervakning testades också i olika systemskalor. Statiska modelleringsmetoder (räkenskaper) identifierades som grundläggande för att kartlägga, kontoföra och övervaka den fysiska resursmetabolismen i produktions- och konsumtionssystem, medan dynamisk modellering visade sin styrka i att skapa förståelse för komplexa system. Resultaten pekar på att dynamiska modelleringsmetoder bör användas som ett komplement till statiska analyser för att förstå komplexiteten i systemen när man utformar och testar styrmedel. För att uppnå proaktiv övervakning bör flödesbaserade räkenskaper utnyttjas i större utsträckning i stället för den vanliga tillstånds- och påverkansövervakningen (state/impact monitoring). En viktig slutsats är därför att LCA-samfundet bör flytta fokus i sina bedömningar från påverkan till flöden.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2016. p. 74
Series
TRITA-IM-PHD 2016:04 ; 2016:04
Keywords
Complex systems modeling, environmental accounting and monitoring, en- vironmental footprint, industrial ecology, pressure-based driver-oriented approach, Modellering av komplexa system, miljöräkenskaper och miljöövervakning, miljöpåverkan, industriell ekologi, flödesbaserad övervakningaktörsorienterad strategi
National Category
Energy Systems Environmental Management
Research subject
Industrial Ecology
Identifiers
urn:nbn:se:kth:diva-191327 (URN)978-91-7729-077-3 (ISBN)
Public defence
2016-09-22, Sal F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20160830

Available from: 2016-08-30 Created: 2016-08-29 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

fulltext(2371 kB)1726 downloads
File information
File name FULLTEXT01.pdfFile size 2371 kBChecksum SHA-512
0b5cdf9ae7bae714389a4db0569909d24e676c815b44835d8f66368a979d7364d1c34e27369a3a2395e9ca189c22452255f2452ee9fab5183be7c870873f5c73
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Sinha, RajibLaurenti, RafaelSingh, JagdeepMalmström, Maria E.Frostell, Björn

Search in DiVA

By author/editor
Sinha, RajibLaurenti, RafaelSingh, JagdeepMalmström, Maria E.Frostell, Björn
By organisation
Industrial Ecology
In the same journal
Resources, Conservation and Recycling
Environmental Management

Search outside of DiVA

GoogleGoogle Scholar
Total: 1726 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 829 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf