Chemiluminescence is the emission of light as aresult of a nonadiabatic chemical reaction. The present work isconcerned with understanding the yield of chemiluminescence,in particular how it dramatically increases upon methylation of1,2-dioxetane. Both ground-state and nonadiabatic dynamics(including singlet excited states) of the decomposition reactionof various methyl-substituted dioxetanes have been simulated.Methyl-substitution leads to a significant increase in thedissociation time scale. The rotation around the O−C−C−Odihedral angle is slowed; thus, the molecular system stayslonger in the “entropic trap” region. A simple kinetic model isproposed to explain how this leads to a higher chemiluminescence yield. These results have important implications for the designof efficient chemiluminescent systems in medical, environmental, and industrial applications.
QC 20171004