kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact Of Wall Materials And Seeding Gases On The Pedestal And On Core Plasma Performance
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.ORCID iD: 0000-0002-9546-4494
Show others and affiliations
2017 (English)In: NUCLEAR MATERIALS AND ENERGY, ISSN 2352-1791, Vol. 12, p. 18-27Article in journal (Refereed) Published
Abstract [en]

Plasmas in machines with all metal plasma facing components have a lower Z(eff), less radiation cooling in the scrape-offlayer and divertor regions and are prone to impurity accumulation in the core. Higher gas puff and the seeding of low-Z impurities are applied to prevent impurity accumulation, to increase the frequency of edge localised modes and to cool the divertor. A lower power threshold for the transition from low- confinement mode to high confinement mode has been found in all metal wall machines when compared to carbon wall machines. The application of lithium before or during discharges can lead to ELM free H-modes. The seeding of high-Z impurities increases core radiation, reduces the power flux across the separatrix and, if applied in the right amount, does not lead to deterioration of the confinement. All these effects have in common that they can often be explained by the shape or position of the density profile. Not only the peakedness of the density profile in the core but also the position of the edge pressure gradient influences global confinement. It is shown how (i) ionisation in the pedestal region due to higher reflection of deuterium from high-Z walls, (ii) reduced recycling in consequence of lithium wall conditioning, (iii) the fostering of edge modes with lithium dropping, (iv) increased gas puffand (v) the cooling of the scrape-offlayer by medium-Z impurities such as nitrogen affect the edge density profile. The consequence is a shift in the pressure profile relative to the separatrix, leading to improved pedestal stability of H-mode plasmas when the direction is inwards.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 12, p. 18-27
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-220631DOI: 10.1016/j.nme.2017.01.002ISI: 000417293300004Scopus ID: 2-s2.0-85015791501OAI: oai:DiVA.org:kth-220631DiVA, id: diva2:1173300
Note

QC 20180112

Available from: 2018-01-12 Created: 2018-01-12 Last updated: 2022-06-26Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Frassinetti, Lorenzo

Search in DiVA

By author/editor
Frassinetti, Lorenzo
By organisation
Fusion Plasma Physics
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf