Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of Reduced and Surface-Modified Graphene Oxide in Poly(Ethylene-co-Butyl Acrylate) Composites for Electrical Applications
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0002-3310-9964
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
Show others and affiliations
2019 (English)In: Polymers, ISSN 2073-4360, E-ISSN 2073-4360, Vol. 11, no 4, article id 740Article in journal (Refereed) Published
Abstract [en]

Promising electrical field grading materials (FGMs) for high-voltage direct-current (HVDC) applications have been designed by dispersing reduced graphene oxide (rGO) grafted with relatively short chains of poly (n-butyl methacrylate) (PBMA) in a poly(ethylene-co-butyl acrylate) (EBA) matrix. All rGO-PBMA composites with a filler fraction above 3 vol.% exhibited a distinct non-linear resistivity with increasing electric field; and it was confirmed that the resistivity could be tailored by changing the PBMA graft length or the rGO filler fraction. A combined image analysis- and Monte-Carlo simulation strategy revealed that the addition of PBMA grafts improved the enthalpic solubility of rGO in EBA; resulting in improved particle dispersion and more controlled flake-to-flake distances. The addition of rGO and rGO-PBMAs increased the modulus of the materials up to 200% and the strain did not vary significantly as compared to that of the reference matrix for the rGO-PBMA-2 vol.% composites; indicating that the interphase between the rGO and EBA was subsequently improved. The new composites have comparable electrical properties as today's commercial FGMs; but are lighter and less brittle due to a lower filler fraction of semi-conductive particles (3 vol.% instead of 30-40 vol.%).

Place, publisher, year, edition, pages
MDPI , 2019. Vol. 11, no 4, article id 740
Keywords [en]
field grading nanocomposites, non-linear resistivity, reduced graphene oxide (rGO), HVDC, SI-ATRP surface modification
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-252652DOI: 10.3390/polym11040740ISI: 000467312900169PubMedID: 31022914Scopus ID: 2-s2.0-85065904341OAI: oai:DiVA.org:kth-252652DiVA, id: diva2:1321802
Note

QC 20190610

Available from: 2019-06-10 Created: 2019-06-10 Last updated: 2019-06-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Sanchez, CarmenWåhlander, MartinKarlsson, Mattias E.Malmström, EvaNilsson, Fritjof

Search in DiVA

By author/editor
Sanchez, CarmenWåhlander, MartinKarlsson, Mattias E.Quintero, Diana C. MarinMalmström, EvaNilsson, Fritjof
By organisation
Fibre- and Polymer Technology
In the same journal
Polymers
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf