kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A reinforcement learning model for material handling task assignment and route planning in dynamic production logistics environment
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0003-1878-773x
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0003-4408-3656
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0003-0798-0753
KTH, School of Industrial Engineering and Management (ITM), Sustainable production development, Avancerad underhållsteknik och produktionslogistik.ORCID iD: 0000-0001-7935-8811
2021 (English)In: Towards Digitalized Manufacturing 4.0 / [ed] MOURTZIS, Dimitris, Elsevier BV , 2021, Vol. 104, p. 1807-1812Conference paper, Published paper (Refereed)
Abstract [en]

The study analyzes the application of reinforcement learning (RL) for material handling tasks in Smart Production Logistics (SPL). It presents two contributions based on empirical results of a RL model in dynamic production logistics environment from the automotive industry. Firstly, an architecture integrating the use of RL in SPL. Secondly, the study defines various elements of RL (environment, value, state, reward, and policy) relevant for training and validating models in SPL. The study provides novel insight essential for manufacturing managers and extends current understanding related to research combining artificial intelligence and SPL, granting manufacturing companies a unique competitive advantage.

Place, publisher, year, edition, pages
Elsevier BV , 2021. Vol. 104, p. 1807-1812
Series
Procedia CIRP, ISSN 2212-8271
Keywords [en]
Reinforcement learning, production logistics, material handling
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Industrial Engineering and Management
Identifiers
URN: urn:nbn:se:kth:diva-305424DOI: 10.1016/j.procir.2021.11.305Scopus ID: 2-s2.0-85121630254OAI: oai:DiVA.org:kth-305424DiVA, id: diva2:1614811
Conference
54th CIRP CMS 2021
Projects
C-PALS
Funder
Vinnova, 2018-03333
Note

QC 20211215

Available from: 2021-11-27 Created: 2021-11-27 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jeong, YongkukAgrawal, Tarun KumarFlores-García, ErikWiktorsson, Magnus

Search in DiVA

By author/editor
Jeong, YongkukAgrawal, Tarun KumarFlores-García, ErikWiktorsson, Magnus
By organisation
Avancerad underhållsteknik och produktionslogistik
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 180 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf