kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phase-contrast chest radiography
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-8853-1441
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-7674-6437
Karolinska Institutet.
Karolinska Institutet.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Respiratory X-ray imaging with phase contrast leads to improved sensitivity, as demonstrated in animal models to date. The translation to humans is limited by currently available technology, leaving the future clinical impact of the technique an open question. Here we demonstrate phase-contrast chest radiography using a proof-of-principle in silico framework. Specifically, we apply our previously developed preprocessing strategy to state-of-the-art realistic virtual human torso phantoms, then generate virtual chest radiographs through wave-propagation simulations. From a blind reader study conducted with clinical radiologists, we predict that phase contrast edge-enhancement has negligible impact for pulmonary nodule detection (6-20 mm). However, edge-enhancement of bronchial walls can visualize small airways (< 2 mm) invisible in conventional radiography. Our results predict that phase-contrast chest radiography could play a future role in diagnosis of small-airway obstruction (e.g., in asthma or chronic obstructive pulmonary disease) thereby motivating the experimental development needed for clinical translation.

National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Physics; Physics, Biological and Biomedical Physics
Identifiers
URN: urn:nbn:se:kth:diva-310180OAI: oai:DiVA.org:kth-310180DiVA, id: diva2:1646621
Note

QC 20220404

Available from: 2022-03-23 Created: 2022-03-23 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Preclinical X-ray imaging beyond attenuation contrast
Open this publication in new window or tab >>Preclinical X-ray imaging beyond attenuation contrast
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Preklinisk röntgenavbildning bortom attenueringskontrast
Abstract [en]

Medical imaging is a cornerstone of modern clinical practice. Here, X-ray imaging is the given choice for rapid morphological imaging with excellent spatial resolution, albeit with sensitivity often insufficient for resolving subtle pathological changes to soft tissues. Fundamentally, the sensitivity issue is due to the image contrast traditionally being based on differential X-ray attenuation (i.e., absorption and scattering) where attenuation properties of soft tissues are often very similar. Improving the sensitivity of clinical X-ray imaging therefore requires moving beyond conventional attenuation contrast.

Motivated by the above, this Thesis explores two alternative contrast mechanisms in the preclinical domain, yet with a clinical outlook: X-ray fluorescence and X-ray phase contrast. These mechanisms are demonstrated both experimentally on animal models (in vivo) and computationally on virtual anatomical phantoms (in silico). Specifically, we developed instrumentation for in vivo X-ray fluorescence imaging of mice injected with nanoparticle contrast agents, demonstrating a path towards molecular X-ray imaging with higher spatial resolution (< 0.5 mm) than established molecular modalities (e.g., PET & SPECT) and roughly 10× higher sensitivity (~ 0.1 mM) compared to conventional attenuation contrast. Furthermore, we showed that the terminal bronchioles (diameters down to ~ 60 μm) could be resolved in free-breathing mice under anesthesia using X-ray imaging boosted by phase contrast. Lastly, we showed through in silico modeling that the extension of X-ray phase contrast to human lungs could potentially enable visualization of small airways (diameters below 2 mm) which are invisible to attenuation contrast alone. In summary, this Thesis provides experimental and computational demonstrations indicating that both X-ray fluorescence and X-ray phase contrast could provide a path towards clinical X-ray imaging with improved sensitivity.

Abstract [sv]

Medicinsk avbildning är en viktig grundsten inom modern klinisk praktik. Här är röntgenavbildning det givna valet för snabb strukturell avbildning med hög upplösning, dock med en känslighet som oftast inte räcker för att upplösa små patologiska förändringar inom mjuka vävnader. Känslighetsproblemet grundar sig i att kontrasten i traditionella röntgenbilder uppstår genom skillnader i attenuering av röntgenstrålningen (p.g.a. absorption och spridning) där attenueringsegenskaperna hos olika vävnader oftast är väldigt lika. Förbättring av känsligheten hos röntgenavbildning kräver därmed att man ser bortom attenueringskontrast.

Mot denna bakgrund undersöker föreliggande avhandling två alternativa kontrastmekanismer i en preklinisk kontext men med klinisk tillämpning i sikte: röntgenfluorescens och faskontraströntgen. Dessa mekanismer demonstreras både experimentellt på djurmodeller (in vivo) samt med beräkningar på virtuella anatomiska fantomer (in silico). Bland annat demonstrerade vi experimentell avbildning med  röntgenfluorescens på möss in vivo injicerade med nanopartiklar som kontrastmedel som ett koncept för molekylär röntgenavbildning med högre spatial upplösning (< 0.5 mm) än nuvarande molekylära avbildningsmodaliteter (t.ex. PET & SPECT) samt en faktor 10× högre känslighet (~ 0.1 mM) jämfört med traditionell attenueringskontrast. Vidare visade vi att de minsta bronkiolerna (med diametrar ner till 60 μm) kunde upplösas i möss under anestesi utan mekanisk ventilering genom avbildning med faskontraströntgen. Slutligen visade vi med in silico modellering att faskontraströntgen tillämpat på människolungor skulle kunna ha potential för att visualisera små luftvägar (med diametrar under 2 mm) som är osynliga genom enbart attenueringskontrast. Sammanfattningsvis innehåller denna avhandling experiment och beräkningar som indikerar att både röntgenfluorescens och faskontraströntgen är lovande kontrastmekanismer för klinisk röntgenavbildning med förbättrad känslighet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 44
Series
TRITA-SCI-FOU ; 2022:07
National Category
Radiology, Nuclear Medicine and Medical Imaging
Research subject
Physics; Physics, Biological and Biomedical Physics
Identifiers
urn:nbn:se:kth:diva-310183 (URN)978-91-8040-176-0 (ISBN)
Public defence
2022-04-22, Room 4204, Hus 3, Albano campus, Hannes Alfvéns väg 12, Stockholm, 10:00 (English)
Opponent
Supervisors
Available from: 2022-03-23 Created: 2022-03-23 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Häggmark, IlianShaker, KianHertz, Hans

Search in DiVA

By author/editor
Häggmark, IlianShaker, KianHertz, Hans
By organisation
Biomedical and X-ray Physics
Radiology, Nuclear Medicine and Medical Imaging

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 274 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf