kth.se
Publications
Please wait ...
Simple search
Advanced search -
Research publications
Advanced search -
Student theses
Statistics
English
Svenska
Norsk
Jump to content
Change search
Search
Search
Only documents with full text in DiVA
Cite
Export
BibTex
CSL-JSON
CSV 1
CSV 2
CSV 3
CSV 4
CSV 5
CSV all metadata
CSV all metadata version 2
RIS
Mods
MARC-XML
ETDMS
Link to record
Permanent link
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315316
Direct link
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:1679938
Cite
Citation style
apa
ieee
modern-language-association-8th-edition
vancouver
Other style
apa
ieee
modern-language-association-8th-edition
vancouver
Other style
More styles
Language
de-DE
en-GB
en-US
fi-FI
nn-NO
nn-NB
sv-SE
Other locale
de-DE
en-GB
en-US
fi-FI
nn-NO
nn-NB
sv-SE
Other locale
More languages
Output format
html
text
asciidoc
rtf
html
text
asciidoc
rtf
Create
Close
Deep Learning for Continuous Time Series of Clinical Waveform Data: Development of a clinical decision support system for predicting mortality in Covid-19 patients
Danker, Carolin
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH).
2022 (English)
Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesis
Alternative title
Djupinlärning för kontinuerlig klinisk vågformsdata : Utveckling av ett verktyg för kliniskt beslutsfattande gällande prognoser av dödlighet bland Covid-19 patienter (Swedish)
Place, publisher, year, edition, pages
2022. , p. 69
Series
TRITA-CBH-GRU ; 2022:090
Keywords [en]
Deep Learning, Mortality Prediction, Time Series Data, Waveform Data, Covid-19
National Category
Medical Engineering
Identifiers
URN:
urn:nbn:se:kth:diva-315316
OAI: oai:DiVA.org:kth-315316
DiVA, id:
diva2:1679938
External cooperation
Karolinska Institute
Subject / course
Medical Engineering
Educational program
Master of Science in Engineering - Medical Engineering
Supervisors
Vinuesa, Ricardo, Associate Professor
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.
Herlenius, Eric, Professor
Karolinska Institute.
Examiners
Larsson, Matilda, Professor
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Biomedical Engineering and Health Systems.
Available from:
2022-08-19
Created:
2022-07-02
Last updated:
2022-08-19
Bibliographically approved
Open Access in DiVA
Masterthesis_Carolin_Danker
(4683 kB)
469 downloads
File information
File name
FULLTEXT01.pdf
File size
4683 kB
Checksum
SHA-512
0fe261d657197bcaee041c8371cb166af191a120b6f662747ee92902813e8f7824809cad58434b9af631415d7362adab8a416a6c78f49cb966d3eb535485965f
Type
fulltext
Mimetype
application/pdf
By organisation
School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH)
On the subject
Medical Engineering
Search outside of DiVA
Google
Google Scholar
Total: 470 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available
urn-nbn
Altmetric score
urn-nbn
Total: 198 hits
Cite
Export
BibTex
CSL-JSON
CSV 1
CSV 2
CSV 3
CSV 4
CSV 5
CSV all metadata
CSV all metadata version 2
RIS
Mods
MARC-XML
ETDMS
Link to record
Permanent link
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-315316
Direct link
http://kth.diva-portal.org/smash/record.jsf?pid=diva2:1679938
Cite
Citation style
apa
ieee
modern-language-association-8th-edition
vancouver
Other style
apa
ieee
modern-language-association-8th-edition
vancouver
Other style
More styles
Language
de-DE
en-GB
en-US
fi-FI
nn-NO
nn-NB
sv-SE
Other locale
de-DE
en-GB
en-US
fi-FI
nn-NO
nn-NB
sv-SE
Other locale
More languages
Output format
html
text
asciidoc
rtf
html
text
asciidoc
rtf
Create
Close
v. 2.47.0
|
WCAG
|
KTH Library
|
DiVA support
|
Register in DiVA
|
Posting your thesis
|
SwePub
DiVA
Logotyp