kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Data-Driven Motion Planning: With Application for Heavy Duty Vehicles
KTH, School of Electrical Engineering and Computer Science (EECS).
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Datadriven rörelseplanering : Med tillämpning för tunga fordon (Swedish)
Abstract [en]

Motion planning consists of finding a feasible path of an object between an initial state and a goal state, and commonly constitutes a sub-system of a larger autonomous system. Motion planners that utilize sampling-based algorithms create an implicit representation of the search space via sampling said search space. Autonomous systems that rely on real-time motion planning benefit from the ability of these algorithms to quickly compute paths that are optimal or near optimal. For sampling-based motion planning algorithms, the sampling strategy greatly affects the convergence speed of finding these paths, i.e., how the sampling distribution is shaped within the search space. In baseline approaches, the samples may be drawn with uniform probability over this space. This thesis project explores a learning-based approach that can utilize experience from previous successful motion plans to provide useful information in novel planning scenarios, as a means of improvement over conventional motion planning methods. Specifically, the focus has been on learning the sampling distributions in both the state space and the control space of an autonomous ground vehicle. The innovatory parts of this work consist of (i) learning the control space sampling distributions, and (ii) learning said distributions for a tractor-trailer system. At the core of the method is an artificial neural network consisting of a conditional variational autoencoder. This artificial neural network is capable of learning suitable sampling distributions in both the state space and control space of a vehicle in different planning scenarios. The method is tested in four different environments and for two kinds of vehicles. Evaluation is partly done by comparison of results with a conventional motion planning algorithm. These evaluations indicates that the artificial neural network can produce valuable information in novel planning scenarios. Future work, primarily on how the artificial neural network may be applied to motion planning algorithms, is necessary to draw further conclusions. 

Abstract [sv]

Rörelseplanering består av att hitta en genomförbar bana för ett objekt mellan ett initialtillstånd och ett måltillstånd, och utgör vanligtvis ett delsystem av ett större autonomt system. Rörelseplanerare som använder provtagningssbaserade algoritmer skapar en implicit representation av sökutrymmet via provtagning av sökutrymmet. Autonoma system som förlitar sig på rörelseplanering i realtid drar nytta av dessa algoritmers förmåga att snabbt beräkna banor som är optimala eller nästan optimala. För provtagningssbaserade rörelseplaneringsalgoritmer påverkar provtagningsstrategin i hög grad konvergenshastigheten för att hitta dessa vägar, dvs. hur provtagningsfördelningen är formad inom sökutrymmet. I standardmetoder kan stickproven dras med jämn sannolikhet över detta utrymme. Detta examensarbete utforskar en lärande-baserat metod som kan utnyttja erfarenheter från tidigare lyckade rörelseplaner för att tillhandahålla användbar information i nya planeringsscenarier, som ett medel för förbättring jämfört med konventionella rörelseplaneringsmetoder. Specifikt har fokus legat på att lära sig provtagningssfördelningarna i både tillståndsrummet och styrsignals-rummet för ett autonomt markfordon. De nyskapande delarna av detta arbete består av att (i) lära sig kontrollutrymmessamplingsfördelningarna, och (ii) inlärning av nämnda provtagningsfördelningarna för ett traktor-släpsystem. Kärnan i metoden är ett artificiellt neuralt nätverk bestående av en conditional variational autoencoder. Detta artificiella neurala nätverk är kapabelt att lära sig lämpliga provtagningsfördelningar i både tillståndsrummet och kontrollrummet för ett fordon i olika planeringsscenarier. Metoden testas i fyra olika miljöer och för två olika av fordon. Utvärdering görs delvis genom jämförelse av resultat med en konventionell rörelseplaneringsalgoritm. Dessa utvärderingar tyder på att det artificiella neurala nätverket kan producera värdefull information i nya planeringsscenarier. Mer forskning, i första hand med hur det artificiella neurala nätverket kan tillämpas på rörelseplaneringsalgoritmer, är nödvändigt för att dra ytterligare slutsatser.

Place, publisher, year, edition, pages
2022. , p. 51
Series
TRITA-EECS-EX ; 2022:562
Keywords [en]
Motion planning, Deep learning, Autonomous driving, Nonuniform sampling
Keywords [sv]
Rörelseplanering, Djupinlärning, Autonom körning, Ojämn provtagning
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-321129OAI: oai:DiVA.org:kth-321129DiVA, id: diva2:1708814
External cooperation
Scania CV AB
Subject / course
Systems Engineering
Educational program
Master of Science - Systems, Control and Robotics
Supervisors
Examiners
Available from: 2022-11-10 Created: 2022-11-07 Last updated: 2022-11-10Bibliographically approved

Open Access in DiVA

fulltext(6717 kB)406 downloads
File information
File name FULLTEXT01.pdfFile size 6717 kBChecksum SHA-512
d837b4591600097cc3d4c9bafc82cd62c74351914455b7002cb2218a80621b85af7373c7d4fe67deb5268eda5a0b1058d96250d7ba2402331d6aa2dd01453f22
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 406 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 282 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf