kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Delineation of vegetated water through pre-trained convolutional networks
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Konturteckning av vegeterat vatten genom förtränade konvolutionella nätverk (Swedish)
Abstract [en]

In a world under the constant impact of global warming, wetlands are decreasing in size all across the globe. As the wetlands are a vital part of preventing global warming, the ability to prevent their shrinkage through restorative measures is critical. Continuously orbiting the Earth are satellites that can be used to monitor the wetlands by collecting images of them over time. In order to determine the size of a wetland, and to register if it is shrinking or not, deep learning models can be used. Especially useful for this task is convolutional neural networks (CNNs). This project uses one type of CNN, a U-Net, to segment vegetated water in satellite data. However, this task requires labeled data, which is expensive to generate and difficult to acquire. The model used therefore needs to be able to generate reliable results even on small data sets. Therefore, pre-training of the network is used with a large-scale natural image segmentation data set called Common Objects in Context (COCO). To transfer the satellite data into RGB images to use as input for the pre-trained network, three different methods are tried. Firstly, the commonly used linear transformation method which simply moves the value of radar data into the RGB feature space. Secondly, two convolutional layers are placed before the U-Net which gradually changes the number of channels of the input data, with weights trained through backpropagation during the fine-tuning of the segmentation model. Lastly, a convolutional auto-encoder is trained in the same way as the convolutional layers. The results show that the autoencoder does not perform very well, but that the linear transformation and convolutional layers methods each can outperform the other depending on the data set. No statistical significance can be shown however between the performance of the two latter. Experimenting with including different amounts of polarizations from Sentinel-1 and bands from Sentinel-2 showed that only using radar data gave the best results. It remains to be determined whether one or both of the polarizations should be included to achieve the best result.

Abstract [sv]

I en värld som ständigt påverkas av den globala uppvärmningen, minskar våtmarkerna i storlek över hela världen. Eftersom våtmarkerna är en viktig del i att förhindra global uppvärmning, är förmågan att förhindra att de krymper genom återställande åtgärder kritisk. Kontinuerligt kretsande runt jorden finns satelliter som kan användas för att övervaka våtmarkerna genom att samla in bilder av dem över tid. För att bestämma storleken på en våtmark, i syfte att registrera om den krymper eller inte, kan djupinlärningsmodeller användas. Speciellt användbar för denna uppgift är konvolutionella neurala nätverk (CNN). Detta projekt använder en typ av CNN, ett U-Net, för att segmentera vegeterat vatten i satellitdata. Denna uppgift kräver dock märkt data, vilket är dyrt att generera och svårt att få tag på. Modellen som används behöver därför kunna generera pålitliga resultat även med små datauppsättning. Därför används förträning av nätverket med en storskalig naturlig bildsegmenteringsdatauppsättning som kallas Common Objects in Context (COCO). För att överföra satellitdata till RGB-bilder som ska användas som indata för det förtränade nätverket prövas tre olika metoder. För det första, den vanliga linjära transformationsmetoden som helt enkelt flyttar värdet av radardatan till RGB-funktionsutrymmet. För det andra två konvolutionella lager placerade före U-Net:et som gradvis ändrar mängden kanaler i indatan, med vikter tränade genom bakåtpropagering under finjusteringen av segmenteringsmodellen. Slutligen tränade en konvolutionell auto encoder på samma sätt som de konvolutionella lagren. Resultaten visar att auto encodern inte fungerar särskilt bra, men att metoderna för linjär transformation och konvolutionella lager var och en kan överträffa den andra beroende på datauppsättningen. Ingen statistisk signifikans kan dock visas mellan prestationen för de två senare. Experiment med att inkludera olika mängder av polariseringar från Sentinell-1 och band från Sentinell-2 visade att endast användning av radardata gav de bästa resultaten. Om att inkludera båda polariseringarna eller bara en är den mest lämpliga återstår fortfarande att fastställa.

Place, publisher, year, edition, pages
2024. , p. 59
Series
TRITA-EECS-EX ; 2024:11
Keywords [en]
Wetland delineation, Satellite image segmentation, Convolutional neural networks, Pre-training, Deep learning, Remote sensing
Keywords [sv]
Avgränsning av våtmarker, Segmentering av satellitbilder, Konvolutionella neurala nätverk, Förträning, Djupinlärning, Fjärranalys
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-344975OAI: oai:DiVA.org:kth-344975DiVA, id: diva2:1848840
External cooperation
Stockholm University
Subject / course
Computer Science
Educational program
Master of Science - Computer Science
Supervisors
Examiners
Available from: 2024-04-08 Created: 2024-04-04 Last updated: 2024-04-08Bibliographically approved

Open Access in DiVA

fulltext(1216 kB)150 downloads
File information
File name FULLTEXT01.pdfFile size 1216 kBChecksum SHA-512
80b4fb040c63cc6b78c10ccd4b6c2e04a2ec799b25acee93f39ce5e54ebacaf1f22dcd8da9c3f03b11cba586038fa744edfb0af94e7171da51bddb1cbd7c4b4d
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 150 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 220 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf