kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Taxi demand prediction using deep learning and crowd insights
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Prognos av taxiefterfrågan med hjälp av djupinlärning och folkströmsdata (Swedish)
Abstract [en]

Real-time prediction of taxi demand in a discrete geographical space is useful as it can minimise service disequilibrium by informing idle drivers of the imbalance, incentivising them to reduce it. This, in turn, can lead to improved efficiency, more stimulating work conditions, and a better customer experience. This study aims to investigate the possibility of utilising an artificial neural network model to make such a prediction for Stockholm. The model was trained on historical demand data and - uniquely - crowd flow data from a cellular provider (aggregated and anonymised). Results showed that the final model could generate very helpful predictions (only off by less than 1 booking on average). External factors - including crowd flow data - had a minor positive impact on performance, but limitations regarding the setup of the zones lead to the study being unable to make a definitive conclusion about whether crowd flow data is effective in improving taxi demand predictors or not.

Abstract [sv]

Prognos av taxiefterfrågan i ett diskret geografiskt utrymme är användbart då det kan minimera obalans mellan utbud och efterfrågan genom att informera lediga taxiförare om obalansen och därmed utjämna den. Detta kan i sin tur leda till förbättrad effektivitet, mer stimulerande arbetsförhållanden och en bättre kundupplevelse. Denna studie ämnar att undersöka möjligheten att använda artificiella neurala nätverk för att göra en sådan prognos för Stockholm. Modellen tränades på historisk data om efterfrågan och - unikt för studien - folkströmsdata (aggregerad och anonymiserad) från en mobiloperatör. Resultaten visade att den slutgiltiga modellen kunde generera användbara prognoser (med ett genomsnittligt prognosfel med mindre än 1 bil per tidsenhet). Externa faktorer – inklusive folkströmsdata – hade en märkbar positiv inverkan på prestandan, men begränsningar rörande framställningen av zonerna ledde till att studien inte kunde dra en definitiv slutsats om huruvida folkströmsdata är effektiva för att förbättra prognoser för taxiefterfrågan eller ej.

Place, publisher, year, edition, pages
2024. , p. 40
Series
TRITA-EECS-EX ; 2024:48
Keywords [en]
Artificial intelligence, Machine learning, Deep learning, Time series regression, Recurrent neural networks (RNN), Long short-term memory (LSTM), Graph neural networks, Graph convolutional networks (GCN), Intelligent transportation systems (ITP), Short term traffic prediction (STTP), Traffic forecasting, Crowd insights
Keywords [sv]
Artificiell intelligens, Maskininlärning, Djupinlärning, Regression av tidsserier, Smarta transportsystem, Trafikprognos, Folkströmsdata
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-345856OAI: oai:DiVA.org:kth-345856DiVA, id: diva2:1853540
External cooperation
Bontouch AB
Subject / course
Computer Science
Educational program
Master of Science - Computer Science
Supervisors
Examiners
Available from: 2024-05-08 Created: 2024-04-22 Last updated: 2024-05-08Bibliographically approved

Open Access in DiVA

fulltext(4187 kB)322 downloads
File information
File name FULLTEXT02.pdfFile size 4187 kBChecksum SHA-512
fa8c75c571de497b928a97d1b48b4497bed26df5ecd7fcfc22fc229935fd21aead73de698df84a40038770b8a53580da38dd8fb5467c85c76f3b5cf6d6de9c92
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 323 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 473 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf