kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Variational Bayesian Inference for Reconciliation of Gene Trees and Species Trees
KTH, School of Electrical Engineering and Computer Science (EECS).
2024 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Gene tree-species tree reconciliation is the problem of mapping each node in a gene tree to a position in a species tree. Several methods have been used to address this problem. Variational inference is a method for finding the best approximation to the true distribution in a family of distributions. In this project, we investigated whether variational inference is a useful method to address the gene tree-species tree reconciliation problem. The distribution of trees is modeled by a so-called Subsplit Bayesian Network (SBN), and the evolution process is modeled by a birth-death process with constant duplication- and loss rate. We implemented the method in Python and compared it with A Variational Approach to Bayesian Phylogenetic Inference [1] (VBPI) [1] using synthetic data. The result showed that our method outperformed VBPI in most test cases.

Abstract [sv]

Genträd-artträdsförsoning är problemet med att kartlägga varje nod i ett genträd till en position i ett artträd. Flera metoder har använts för att lösa detta problem. Variationsinferens är en metod för att hitta den bästa approximationen till den sanna fördelningen i en familj av sannolikhetsfördelningar. I det här projektet undersökte vi om variationsinferens är en användbar metod för att lösa Genträd-artträdsförsoningproblemet. Fördelningen av träd modelleras av ett så kallat subsplit Bayesian-nätverk (SBN), och evolutionsprocessen är modellerad av en födelse-dödsprocess med konstant duplicering- och förlusthastighet. Vi implementerade metoden i Python och jämförde den med VBPI [1] med syntetisk data. Resultatet visade att vår metod överträffade VBPI i de flesta testfallen.

Place, publisher, year, edition, pages
2024. , p. 47
Series
TRITA-EECS-EX ; 2024:78
Keywords [en]
Bayesian, phylogenetic inference, variational inference, subsplit Bayesian networks, gene tree, species tree, gene duplication and loss, reconciliation
Keywords [sv]
Bayesiansk, fylogenetisk inferens, variationsinferens, subsplit Bayesianska nätverk, genträd, artträd, genduplikation och förlust, försoning
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-347936OAI: oai:DiVA.org:kth-347936DiVA, id: diva2:1871793
Subject / course
Computer Science
Educational program
Master of Science - Computer Science
Supervisors
Examiners
Available from: 2024-06-20 Created: 2024-06-17 Last updated: 2024-06-20Bibliographically approved

Open Access in DiVA

fulltext(565 kB)148 downloads
File information
File name FULLTEXT01.pdfFile size 565 kBChecksum SHA-512
90753838ce0a22444482ff99efcd61d7df8fb46480d2725d755c8c98124c28acd58877820ac73347e6b07137abeb7986613cd1bcf566fc9a0747a1f91866f5d6
Type fulltextMimetype application/pdf

By organisation
School of Electrical Engineering and Computer Science (EECS)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 148 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 294 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf