Forecasting the Future Mobility Market
2024 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE credits
Student thesisAlternative title
Forecasting the Future Mobility Market (Swedish)
Abstract [en]
This thesis explores the critical external variables affecting the development of a forecasting model for the total volume of car advertisements on Blocket, a marketplace platform owned by the Nordic media and marketplace company Schibsted. The model was crafted using multiple linear regression, aligning with industry practices for selecting external variables, and was developed in close collaboration with industry experts from Schibsted. The dataset spans from May 2017 to December 2023, showcasing pronounced monthly seasonal trends, which were managed using dummy variables.An initial model was created, yielding an impressive R^2 of 0,94. This model included the average duration that car dealerships in Sweden hold their inventory. However, this variable proved unsuitable due to a scarcity of data points and challenges in forecasting it, leading to its exclusion from the final results. The definitive model features variables such as sales of privately used and new cars, the Volkswagen base rate, and disposable income, achieving an adjusted R^2 of 0,90 with all variables demonstrating significance. This model highlights the significant role of financing options for private car buyers, particularly shown by the substantial coefficient of the Volkswagen base rate. Determining whether this report shows causality would require further, more detailed research.However, the report acknowledges certain limitations, including a lack of data variability, which constrains the model's robustness and applicability across different economic conditions like recessions and booms. Additionally, the model, with its 83 data points, could benefit from an expanded dataset. Despite these shortcomings, the report offers valuable insights into the factors affecting consumer behaviour in the mobility market and outlines potential directions for future research.
Abstract [sv]
Denna rapport undersöker de kritiska externa variablerna som påverkar utvecklingen av en prognosmodell för den totala volymen av bilannonser på Blocket, en marknadsplatsplattform som ägs av det nordiska medie- och marknadsplatsföretaget Schibsted. Modellen skapades med hjälp av multipel linjär regression, i linje med branschpraxis för val av externa variabler, och utvecklades i nära samarbete med branschexperter från Schibsted. Datamängden sträcker sig från maj 2017 till december 2023 och visar på uttalade månatliga säsongsvariationer, som hanterades med hjälp av dummyvariabler.En inledande modell skapades, vilket resulterade i ett imponerande R^2 på 0,94. Denna modell inkluderade den genomsnittliga tiden som bilhandlare i Sverige håller en bil i lager. Dock visade sig denna variabel vara olämplig på grund av brist på datapunkter och svårigheter att förutsäga den, vilket ledde till att den uteslöts från de slutliga resultaten. Den slutgiltiga modellen innehåller variabler som försäljning av privatägda begagnade och nya bilar, basränta från Volkswagen samt disponibel inkomst, och uppnådde ett justerat R^2 på 0,90 där alla variabler visade sig vara signifikanta. Denna modell betonar betydelsen av finansieringsalternativ för privata bilköpare, särskilt av Volkswagens basräntas betydande koefficient. Att avgöra om denna rapport visar på kausalitet skulle kräva ytterligare, mer detaljerad forskning.Rapporten har dock vissa begränsningar, inklusive brist på datavariabilitet, vilket begränsar modellens robusthet och tillämpbarhet under olika ekonomiska förhållanden som recessioner och högkonjunkturer. Dessutom kunde modellen, med sina 83 datapunkter, dra nytta av en utökad datamängd. Trots dessa brister erbjuder rapporten värdefulla insikter om de faktorer som påverkar konsumentbeteendet på mobilitetsmarknaden och visar potentiella riktningar för framtida forskning.
Place, publisher, year, edition, pages
2024.
Series
TRITA-SCI-GRU ; 2024:098
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:kth:diva-352515OAI: oai:DiVA.org:kth-352515DiVA, id: diva2:1894669
External cooperation
Schibsted
Subject / course
Applied Mathematics and Industrial Economics
Educational program
Master of Science in Engineering - Industrial Engineering and Management
Supervisors
Examiners
2024-09-032024-09-03