CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt828",{id:"formSmash:upper:j_idt828",widgetVar:"widget_formSmash_upper_j_idt828",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt829_j_idt831",{id:"formSmash:upper:j_idt829:j_idt831",widgetVar:"widget_formSmash_upper_j_idt829_j_idt831",target:"formSmash:upper:j_idt829:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A Markov Process on Cyclic WordsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2014. , p. vii, 35
##### Series

TRITA-MAT-A ; 2014:12
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-156862ISBN: 978-91-7595-357-1 (print)OAI: oai:DiVA.org:kth-156862DiVA, id: diva2:768235
##### Public defence

2014-12-12, E3, Osquars backe 14, KTH, Stockholm, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1118",{id:"formSmash:j_idt1118",widgetVar:"widget_formSmash_j_idt1118",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1124",{id:"formSmash:j_idt1124",widgetVar:"widget_formSmash_j_idt1124",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1130",{id:"formSmash:j_idt1130",widgetVar:"widget_formSmash_j_idt1130",multiple:true});
##### Note

##### List of papers

The TASEP (totally asymmetric simple exclusion process) studied here is a Markov chain on cyclic words over the alphabet{1,2,...,n} given by at each time step sorting an adjacent pair of letters chosen uniformly at random. For example, from the word 3124 one may go to 1324, 3124, 3124, 4123 by sorting the pair 31, 12, 24, or 43.

Two words have the sametype if they are permutations of each other. If we restrict TASEP to words of some particular type **m **we get an ergodic Markov chain whose stationary distribution we denote by ζ_{m}. Soζ_{m }(u) is the asymptotic proportion of time spent in the state *u *if the chain started in some word of type **m**. The distribution ζ is the main object of study in this thesis. This distribution turns out to have several remarkable properties, and alternative characterizations. It has previously been studied both from physical, combinatorial, and probabilitistic viewpoints.

In the first chapter we give an extended summary of known results and results in this thesis concerning ζ. The new results are described (and proved) in detail in Papers I - IV.

The new results in Papers I and II include an explicit formula for the value ofζat sorted words and a product formula for decomposable words. We also compute some correlation functions for ζ. In Paper III we study of a generalization of TASEP to Weyl groups. In Paper IV we study a certain scaling limit of ζ, finding several interesting patterns of which we prove some. We also study an inhomogenous version of TASEP, in which different particles get sorted at different rates, which generalizes the homogenous version in several aspects. In the first chapter we compute some correlation functions for ζ

QC 20141204

Available from: 2014-12-04 Created: 2014-12-03 Last updated: 2015-08-27Bibliographically approved1. Stationary probability of the identity for the TASEP on a Ring$(function(){PrimeFaces.cw("OverlayPanel","overlay768228",{id:"formSmash:j_idt1179:0:j_idt1183",widgetVar:"overlay768228",target:"formSmash:j_idt1179:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. A product formula for the TASEP on a ring$(function(){PrimeFaces.cw("OverlayPanel","overlay768229",{id:"formSmash:j_idt1179:1:j_idt1183",widgetVar:"overlay768229",target:"formSmash:j_idt1179:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. TASEP in any Weyl group$(function(){PrimeFaces.cw("OverlayPanel","overlay768230",{id:"formSmash:j_idt1179:2:j_idt1183",widgetVar:"overlay768230",target:"formSmash:j_idt1179:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. Continuous multiline queues and TASEP$(function(){PrimeFaces.cw("OverlayPanel","overlay768232",{id:"formSmash:j_idt1179:3:j_idt1183",widgetVar:"overlay768232",target:"formSmash:j_idt1179:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1840",{id:"formSmash:j_idt1840",widgetVar:"widget_formSmash_j_idt1840",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1893",{id:"formSmash:lower:j_idt1893",widgetVar:"widget_formSmash_lower_j_idt1893",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1894_j_idt1896",{id:"formSmash:lower:j_idt1894:j_idt1896",widgetVar:"widget_formSmash_lower_j_idt1894_j_idt1896",target:"formSmash:lower:j_idt1894:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});