CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt828",{id:"formSmash:upper:j_idt828",widgetVar:"widget_formSmash_upper_j_idt828",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt829_j_idt831",{id:"formSmash:upper:j_idt829:j_idt831",widgetVar:"widget_formSmash_upper_j_idt829_j_idt831",target:"formSmash:upper:j_idt829:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Equilibrium and Dynamics on Complex NetworkdsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2016. , p. 189
##### Series

TRITA-CSC-A, ISSN 1653-5723 ; 2016:17
##### Keywords [en]

Statistical mechanics, complex networks, spin systems, non equilibrium dynamics, generalized belief propagation, message passing, cavity method, variational approaches
##### National Category

Other Physics Topics Physical Sciences
##### Research subject

Physics
##### Identifiers

URN: urn:nbn:se:kth:diva-191991ISBN: 978-91-7729-058-2 (print)OAI: oai:DiVA.org:kth-191991DiVA, id: diva2:957675
##### Public defence

2016-09-09, Kollegiesalen, Brinellvägen 8, plan 4, Stockholm, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1118",{id:"formSmash:j_idt1118",widgetVar:"widget_formSmash_j_idt1118",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1124",{id:"formSmash:j_idt1124",widgetVar:"widget_formSmash_j_idt1124",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt1130",{id:"formSmash:j_idt1130",widgetVar:"widget_formSmash_j_idt1130",multiple:true});
##### Note

##### List of papers

Complex networks are an important class of models used to describe the behaviour of a very broad category of systems which appear in different fields of science ranging from physics, biology and statistics to computer science and other disciplines. This set of models includes spin systems on a graph, neural networks, decision networks, spreading disease, financial trade, social networks and all systems which can be represented as interacting agents on some sort of graph architecture.

In this thesis, by using the theoretical framework of statistical mechanics, the equilibrium and the dynamical behaviour of such systems is studied.

For the equilibrium case, after presenting the region graph free energy approximation, the Survey Propagation method, previously used to investi- gate the low temperature phase of complex systems on tree-like topologies, is extended to the case of loopy graph architectures.

For time-dependent behaviour, both discrete-time and continuous-time dynamics are considered. It is shown how to extend the cavity method ap- proach from a tool used to study equilibrium properties of complex systems to the discrete-time dynamical scenario. A closure scheme of the dynamic message-passing equation based on a Markovian approximations is presented. This allows to estimate non-equilibrium marginals of spin models on a graph with reversible dynamics. As an alternative to this approach, an extension of region graph variational free energy approximations to the non-equilibrium case is also presented. Non-equilibrium functionals that, when minimized with constraints, lead to approximate equations for out-of-equilibrium marginals of general spin models are introduced and discussed.

For the continuous-time dynamics a novel approach that extends the cav- ity method also to this case is discussed. The main result of this part is a Cavity Master Equation which, together with an approximate version of the Master Equation, constitutes a closure scheme to estimate non-equilibrium marginals of continuous-time spin models. The investigation of dynamics of spin systems is concluded by applying a quasi-equilibrium approach to a sim- ple case. A way to test self-consistently the assumptions of the method as well as its limits is discussed.

In the final part of the thesis, analogies and differences between the graph- ical model approaches discussed in the manuscript and causal analysis in statistics are presented.

QC 20160904

Available from: 2016-09-04 Created: 2016-09-03 Last updated: 2016-09-05Bibliographically approved1. Cavity Method: Message Passing from a Physics perspective$(function(){PrimeFaces.cw("OverlayPanel","overlay958026",{id:"formSmash:j_idt1179:0:j_idt1183",widgetVar:"overlay958026",target:"formSmash:j_idt1179:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On one-step replica symmetry breaking in the Edwards-Anderson spin glass model$(function(){PrimeFaces.cw("OverlayPanel","overlay958020",{id:"formSmash:j_idt1179:1:j_idt1183",widgetVar:"overlay958020",target:"formSmash:j_idt1179:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Dynamic message-passing approach for kinetic spin models with reversible dynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay846780",{id:"formSmash:j_idt1179:2:j_idt1183",widgetVar:"overlay846780",target:"formSmash:j_idt1179:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

4. A simple approach to the dynamics of Ising spin systems$(function(){PrimeFaces.cw("OverlayPanel","overlay958022",{id:"formSmash:j_idt1179:3:j_idt1183",widgetVar:"overlay958022",target:"formSmash:j_idt1179:3:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

5. A Cavity Master Equation for the continuous time dynamics of discrete spins models$(function(){PrimeFaces.cw("OverlayPanel","overlay958023",{id:"formSmash:j_idt1179:4:j_idt1183",widgetVar:"overlay958023",target:"formSmash:j_idt1179:4:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

6. Perturbative large deviation analysis of non-equilibrium dynamics$(function(){PrimeFaces.cw("OverlayPanel","overlay808824",{id:"formSmash:j_idt1179:5:j_idt1183",widgetVar:"overlay808824",target:"formSmash:j_idt1179:5:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

7. Causal analysis, Correlation-Response, and Dynamic cavity$(function(){PrimeFaces.cw("OverlayPanel","overlay935992",{id:"formSmash:j_idt1179:6:j_idt1183",widgetVar:"overlay935992",target:"formSmash:j_idt1179:6:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1840",{id:"formSmash:j_idt1840",widgetVar:"widget_formSmash_j_idt1840",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1893",{id:"formSmash:lower:j_idt1893",widgetVar:"widget_formSmash_lower_j_idt1893",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1894_j_idt1896",{id:"formSmash:lower:j_idt1894:j_idt1896",widgetVar:"widget_formSmash_lower_j_idt1894_j_idt1896",target:"formSmash:lower:j_idt1894:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});