Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Basic modelling of creep rupture in austenitic stainless steels
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap, Materialteknologi.ORCID-id: 0000-0002-8348-1633
KTH, Skolan för industriell teknik och management (ITM), Materialvetenskap.ORCID-id: 0000-0002-8494-3983
2017 (engelsk)Inngår i: Theoretical and applied fracture mechanics (Print), ISSN 0167-8442, E-ISSN 1872-7638, Vol. 89, s. 139-146Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Creep rupture can happen in two ways, brittle and ductile creep rupture. Brittle creep rupture of austenitic stainless steels proceeds with the nucleation, growth and coalescence of grain boundary cavities. A creep cavity nucleation model has been developed previously, which considers cavity nucleation at particles and sub-boundary corners due to grain boundary sliding. A modified constrained cavity growth model has been used to describe the cavity growth behavior with combination of the cavity nucleation models. In this paper, the brittle creep rupture has been analyzed by combining the cavity nucleation and growth models. The physically based models where no adjustable parameters were involved were used to predict the brittle creep rupture strength. On the other hand, previously developed basic models for ductile creep rupture based on exhaustion of the creep ductility have been used. The creep rupture strength of common austenitic stainless steels has been predicted quantitatively by taking both ductile and brittle rupture into account. The predicted rupture times for ductile rupture are longer than those for brittle rupture at high stresses and low temperatures with a reversed situation at low stresses and high temperatures. This reproduces the characteristic change in slope in the creep rupture curves.

sted, utgiver, år, opplag, sider
Elsevier B.V. , 2017. Vol. 89, s. 139-146
Emneord [en]
Austenitic stainless steels, Brittle creep rupture, Creep cavitation, Creep rupture strength, Ductile creep rupture, Austenite, Austenitic stainless steel, Fracture toughness, Grain boundaries, Grain boundary sliding, Grain growth, Nucleation, Adjustable parameters, Brittle creeps, Cavity nucleation, Creep rupture strengths, Creep ruptures, High temperature, Physically based models, Creep
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-207314DOI: 10.1016/j.tafmec.2017.02.004ISI: 000400217200013Scopus ID: 2-s2.0-85013809223OAI: oai:DiVA.org:kth-207314DiVA, id: diva2:1108856
Merknad

QC 20170613

Tilgjengelig fra: 2017-06-13 Laget: 2017-06-13 Sist oppdatert: 2017-06-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

He, JunjingSandström, Rolf

Søk i DiVA

Av forfatter/redaktør
He, JunjingSandström, Rolf
Av organisasjonen
I samme tidsskrift
Theoretical and applied fracture mechanics (Print)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 138 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf