Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Advanced atomistic models for radiation damage in Fe-based alloys: Contributions and future perspectives from artificial neural networks
Studie Ctr Kerneenergie, Ctr Etud Energie Nucl SCK CEN, NMS Unit, Boeretang 200, B-2400 Mol, Belgium..
Consejo Nacl Invest Cient & Tecn CONICET, Godoy Cruz 2290 C1425FQB CABA, Buenos Aires, DF, Argentina..
KTH, Skolan för teknikvetenskap (SCI), Fysik, Reaktorfysik.ORCID-id: 0000-0003-0562-9070
EDF R&D, Dept Mat & Mecan Composants, F-77250 Moret Sur Loing, France..
Vise andre og tillknytning
2018 (engelsk)Inngår i: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 148, s. 116-130Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Machine learning, and more specifically artificial neural networks (ANN), are powerful and flexible numerical tools that can lead to significant improvements in many materials modelling techniques. This paper provides a review of the efforts made so far to describe the effects of irradiation in Fe-based and W-based alloys, in a multiscale modelling framework. ANN were successfully used as innovative parametrization tools in these models, thereby greatly enhancing their physical accuracy and capability to accomplish increasingly challenging goals. In the provided examples, the main goal of ANN is to predict how the chemical complexity of local atomic configurations, and/or specific strain fields, influence the activation energy of selected thermally-activated events. This is most often a more efficient approach with respect to previous computationally heavy methods. In a future perspective, similar schemes can be potentially used to calculate other quantities than activation energies. They can thus transfer atomic-scale properties to higher-scale simulations, providing a proper bridging across scales, and hence contributing to the achievement of accurate and reliable multiscale models.

sted, utgiver, år, opplag, sider
Elsevier, 2018. Vol. 148, s. 116-130
Emneord [en]
Artificial neural networks, Kinetic Monte Carlo, Irradiation damage, Multiscale modelling
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-226734DOI: 10.1016/j.commatsci.2018.02.025ISI: 000428907600013Scopus ID: 2-s2.0-85042355717OAI: oai:DiVA.org:kth-226734DiVA, id: diva2:1203316
Forskningsfinansiär
EU, Horizon 2020, 755039, 661913
Merknad

QC 20180503

Tilgjengelig fra: 2018-05-03 Laget: 2018-05-03 Sist oppdatert: 2018-05-03bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Messina, LucaOlsson, Pär

Søk i DiVA

Av forfatter/redaktør
Messina, LucaOlsson, Pär
Av organisasjonen
I samme tidsskrift
Computational materials science

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 211 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf