Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
State space representation for verification of open systems
KTH, Skolan för datavetenskap och kommunikation (CSC), Numerisk Analys och Datalogi, NADA.
2006 (engelsk)Licentiatavhandling, monografi (Annet vitenskapelig)
Abstract [en]

When designing an open system, there might be no implementation available for cer- tain components at verification time. For such systems, verification has to be based on assumptions on the underspecified components. In this thesis, we present a framework for the verification of open systems through explicit state space representation.

We propose Extended Modal Transition Systems (EMTS) as a suitable structure for representing the state space of open systems when assumptions on components are writ- ten in the modal μ-calculus. EMTSs are based on the Modal Transition Systems (MTS) of Larsen. This representation supports state space exploration based verification tech- niques, and provides an alternative formalism for graphical specification. In interactive verification, it enables proof reuse and facilitates visualization for the user guiding the verification process.

We present a two-phase construction from process algebraic open system descriptions to such state space representations. The first phase deals with component assumptions, and is essentially a maximal model construction for the modal μ-calculus that makes use of a powerset construction for the fixed point cases. In the second phase, the models obtained are combined according to the structure of the open system to form the complete state space. The construction is sound and complete for systems with a single unknown component and sound for those without dynamic process creation. We suggest a tableau-based proof system for establishing open system properties of the state space representation. The proof system is sound and it is complete for modal μ-calculus formulae with only prime subformulae.

A complete framework based on the state space representation is offered for the auto- matic verification of open systems. The process begins with specifying the open system by a process algebraic term with assumptions. Then, the state space representation is ex- tracted from this description using the construction described above. Finally, open system properties can be checked on this representation using the proof system.

sted, utgiver, år, opplag, sider
Stockholm: Numerisk analys och datalogi , 2006. , s. viii, 100
Serie
Trita-CSC-A, ISSN 1653-5723 ; 2006:3
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-3973ISBN: 91-7178-341-5 (tryckt)OAI: oai:DiVA.org:kth-3973DiVA, id: diva2:10232
Presentation
2006-05-31, E3, KTH, Osquars Backe 14, Stockholm, 10:00
Opponent
Veileder
Merknad
QC 20101108Tilgjengelig fra: 2006-05-17 Laget: 2006-05-17 Sist oppdatert: 2018-01-14bibliografisk kontrollert

Open Access i DiVA

fulltekst(732 kB)405 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 732 kBChecksum SHA-1
ce6b845a603f25aeedbf24fe35065c0d62bee4552504e28c5061d4fda4a2cdf181dc9e82
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Aktug, Irem
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 405 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 1120 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf