Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Modelling of Acoustic Resonators Using the Linearized Navier Stokes Equations
KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).ORCID-id: 0000-0001-7898-8643
KTH, Skolan för industriell teknik och management (ITM), Centra, Competence Center for Gas Exchange (CCGEx).
2016 (engelsk)Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

To tune the acoustics of intake systems resonators are often used. A problem with this solution is that the performance of these resonators can be affected a lot by flow. First, for low frequencies (Strouhal-numbers) the acoustic induced vorticity across a resonator inlet opening will create damping, which can reduce the efficiency. Secondly, the vorticity across the opening can also change the end-correction (added mass) for the resonator, which can modify the resonance frequency. However, the largest problem that can occur is whistling. This happens since the vortex-sound interaction across a resonator opening for certain Strouhal-numbers will amplify incoming sound waves. A whistling can then be created if this amplified sound forms a feedback loop, e.g., via reflections from system boundaries or the resonator. To analyse this kind of problem it is necessary to have a model that allows for both sound and vorticity and their interaction. This means using a convected wave equation type of model is not sufficient. A better approach is to apply the linearized Navier Stokes equations, which will give a full model of the vortex-sound effects. In this paper an effort to apply this approach on a set of generic resonators is described. Besides the numerical results comparisons with experiments are also presented.

sted, utgiver, år, opplag, sider
SAE International , 2016. Vol. 2016-June, nr June
Emneord [en]
Acoustic noise, Acoustic resonators, Linearization, Orifices, Strouhal number, Viscous flow, Vortex flow, Vorticity, Convected wave equations, End corrections, Feed-back loop, Linearized navier-stokes equations, Numerical results, Resonance frequencies, System boundary, Vortex-sound interactions, Navier Stokes equations
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-197226DOI: 10.4271/2016-01-1821Scopus ID: 2-s2.0-84978115089OAI: oai:DiVA.org:kth-197226DiVA, id: diva2:1052022
Konferanse
9th International Styrian Noise, Vibration and Harshness Congress: The European Automotive Noise Conference, ISNVH 2016
Merknad

QC 20161205

Tilgjengelig fra: 2016-12-05 Laget: 2016-11-30 Sist oppdatert: 2017-04-10bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Du, LinÅbom, Mats

Søk i DiVA

Av forfatter/redaktør
Du, LinÅbom, MatsKarlsson, Mikael
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 131 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf