Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Efficient Radiographic Image Retrieval System Using Convolutional Neural Network
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering.ORCID-id: 0000-0002-7767-3399
KTH, Skolan för teknik och hälsa (STH), Medicinsk teknik, Medicinsk bildbehandling och visualisering.ORCID-id: 0000-0001-5765-2964
Vise andre og tillknytning
2016 (engelsk)Inngår i: 2016 23rd International Conference on Pattern Recognition (ICPR), Institute of Electrical and Electronics Engineers (IEEE), 2016, s. 3134-3139, artikkel-id 7900116Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Content-Based Medical Image Retrieval (CBMIR) is an important research field in the context of medical data management. In this paper we propose a novel CBMIR system for the automatic retrieval of radiographic images. Our approach employs a Convolutional Neural Network (CNN) to obtain high- level image representations that enable a coarse retrieval of images that are in correspondence to a query image. The retrieved set of images is refined via a non-parametric estimation of putative classes for the query image, which are used to filter out potential outliers in favour of more relevant images belonging to those classes. The refined set of images is finally re-ranked using Edge Histogram Descriptor, i.e. a low-level edge-based image descriptor that allows to capture finer similarities between the retrieved set of images and the query image. To improve the computational efficiency of the system, we employ dimensionality reduction via Principal Component Analysis (PCA). Experiments were carried out to evaluate the effectiveness of the proposed system on medical data from the “Image Retrieval in Medical Applications” (IRMA) benchmark database. The obtained results show the effectiveness of the proposed CBMIR system in the field of medical image retrieval.

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2016. s. 3134-3139, artikkel-id 7900116
Serie
Proceedings - International Conference on Pattern Recognition, ISSN 1051-4651
Emneord [en]
Content based image retrieval and data mining, Medical image and signal analysis, Deep learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-197570DOI: 10.1109/ICPR.2016.7900116ISI: 000406771303020Scopus ID: 2-s2.0-85019074329ISBN: 9781509048472 (tryckt)OAI: oai:DiVA.org:kth-197570DiVA, id: diva2:1052120
Konferanse
23rd International Conference on Pattern Recognition, ICPR 2016, Cancun CenterCancun, Mexico, 4 December 2016 through 8 December 2016
Forskningsfinansiär
Swedish Research Council, 2012-3512Swedish Research Council, 2014-6153VINNOVA, E9126
Merknad

QC 20161208

Tilgjengelig fra: 2016-12-05 Laget: 2016-12-05 Sist oppdatert: 2017-10-10bibliografisk kontrollert

Open Access i DiVA

fulltext(539 kB)82 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 539 kBChecksum SHA-512
f79aea46019243a75b637c8d615fa3329a81310487784d4a759cc7ddddbe44f8214c6005edb99a5bbc6a48018bbf8ee51c0965974c2d234881491e3e2daa2224
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Chowdhury, ManishMoreno, RodrigoSmedby, Örjan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 82 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 749 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf