Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
State-Estimator Design for the KTH Research Concept Vehicle
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg, Fordonsdynamik. KTH, Skolan för industriell teknik och management (ITM), Centra, Integrated Transport Research Lab, ITRL.
2016 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

The Research Concept Vehicle (RCV) is a pure electric vehicle with four in-wheel motors and individual steering as well as camber actuators. It serves as an experimental research vehicle which is built by the Integrated Transport Research Lab (ITRL). The development of the RCV’s functionality never stops after the platform started running. In order to involve the advanced driver assistance systems and realize autonomous driving in the RCV, accurate information of vehicle dynamic states and the environment is required. In this case, based on the sensors we have on the RCV, sensor fusion and state estimation are critical to be adopted for solving this problem.

The purpose of this thesis is to find appropriate estimators, define the specifications and design the corresponding logics to estimate vehicle dynamic parameters and the navigation information. The classic Kalman Filter (KF) and its extension for nonlinear systems Unscented Kalman Filter (UKF) are explained and used for solving the problem. A double-track vehicle model is implemented in the estimator for current use and further development. The results of all estimations are shown, and the mathematical evaluation of position estimates indicate that they outperform the original signals which are inputs to the sensor fusion algorithm. At last, some suggestions for further improvement are presented.

sted, utgiver, år, opplag, sider
2016. , s. 64
Serie
TRITA-AVE, ISSN 1651-7660 ; 2016:10
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-198518OAI: oai:DiVA.org:kth-198518DiVA, id: diva2:1057207
Examiner
Tilgjengelig fra: 2016-12-16 Laget: 2016-12-16 Sist oppdatert: 2017-03-17bibliografisk kontrollert

Open Access i DiVA

fulltext(4540 kB)168 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4540 kBChecksum SHA-512
6730fa3d79c29b77ebed1b947bf0b07ca16730d8dac708dc27af7d0a6f528fac4bd2010e17f52131e15995fd2ac904ad4147caf0da2731400d92ae7e4170ea7f
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 168 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 532 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf