People living in urban environments are subject to high health risks due to various anthropogenicsources of airborne particulate matter, including wear of transport vehicle brakes. Studies ofairborne particles often require an estimate of the effective particle density, a property thatallows correct matching of mass and size characteristics measured by different aerosolinstruments. In this study we investigated the effective density of airborne wear particles emittedfrom car brake materials. The particles were generated by a pin-on-disc machine located in asealed chamber. Two methods were used to determine the effective density. The first method isbased on measurements of PM10 and particle size distribution. The second method involvesmeasurements and subsequent fitting of the mobility size distribution and aerodynamic sizedistribution. Results from the two methods showed good agreement. It was found that theeffective density is 0.75±0.2 g/cm3. The particle emission, size distribution and effectivedensity are sensitive to temperature variations. An intensive emission of ultrafine particles isinitiated at the disc temperature of 185±16 °C. The effective density decreases with thetemperature in the interval 110–360 °C. There is a large difference between the effective densityand the density of the particle material, which suggests that the particles are porous.
QC 20170308