Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dynamic texture recognition using time-causal spatio-temporal scale-space filters
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). (Computational Brain Science Lab)ORCID-id: 0000-0003-0011-6444
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). (Computational Brain Science Lab)ORCID-id: 0000-0002-9081-2170
2017 (engelsk)Inngår i: Scale Space and Variational Methods in Computer Vision, Springer, 2017, Vol. 10302, s. 16-28Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

This work presents an evaluation of using time-causal scale-space filters as primitives for video analysis. For this purpose, we present a new family of video descriptors based on regional statistics of spatiotemporal scale-space filter responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain. We evaluate one member in this family, constituting a joint binary histogram, on two widely used dynamic texture databases. The experimental evaluation shows competitive performance compared to previous methods for dynamic texture recognition, especially on the more complex DynTex database. These results support the descriptive power of time-causal spatio-temporal scale-space filters as primitives for video analysis.

sted, utgiver, år, opplag, sider
Springer, 2017. Vol. 10302, s. 16-28
Serie
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), ISSN 0302-9743 ; 10302
Emneord [en]
dynamic texture, receptive field, spatio-temporal, time-causal, time-recursive, receptive field histogram, spatio-temporal descriptor, video descriptor, scale space, recognition, video analysis, computer vision
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-202697DOI: 10.1007/978-3-319-58771-4_2ISI: 000432210900002Scopus ID: 2-s2.0-85019739861ISBN: 9783319587707 (tryckt)OAI: oai:DiVA.org:kth-202697DiVA, id: diva2:1094826
Konferanse
SSVM 2017: 6th International Conference on Scale Space and Variational Methods in Computer Vision, Kolding, Denmark, June 4-8, 2017
Prosjekter
Scale-space theory for invariant and covariant visual receptive fieldsTime-causal receptive fields for computer vision and modelling of biological vision
Forskningsfinansiär
Swedish Research Council, 2014-4083Stiftelsen Olle Engkvist Byggmästare, 2015/465
Merknad

QC 20170512

Tilgjengelig fra: 2017-05-11 Laget: 2017-05-11 Sist oppdatert: 2018-06-18bibliografisk kontrollert

Open Access i DiVA

DTRecognSpatioTemporalScSpFilters_JanssonLindeberg_SSVM2017(5900 kB)116 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 5900 kBChecksum SHA-512
2a543e9abb130113fb34fd9c97f40425898cb0cf3803923f1a567851d01b394d094193b7862bc2e72497a22d5d1641f15d5898ced44f550007f1395cf05f7c78
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopusHome page of SSVM 2017

Søk i DiVA

Av forfatter/redaktør
Jansson, YlvaLindeberg, Tony
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 116 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 815 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf