Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics
KTH, Skolan för datavetenskap och kommunikation (CSC).
KTH, Skolan för datavetenskap och kommunikation (CSC).
KTH, Skolan för bioteknologi (BIO), Genteknologi. KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-5401-5553
KTH, Centra, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0001-5689-9797
2017 (engelsk)Inngår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 33, nr 4, s. 508-513Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Motivation: Liquid chromatography is frequently used as a means to reduce the complexity of peptide-mixtures in shotgun proteomics. For such systems, the time when a peptide is released from a chromatography column and registered in the mass spectrometer is referred to as the peptide's retention time. Using heuristics or machine learning techniques, previous studies have demonstrated that it is possible to predict the retention time of a peptide from its amino acid sequence. In this paper, we are applying Gaussian Process Regression to the feature representation of a previously described predictor ELUDE. Using this framework, we demonstrate that it is possible to estimate the uncertainty of the prediction made by the model. Here we show how this uncertainty relates to the actual error of the prediction. Results: In our experiments, we observe a strong correlation between the estimated uncertainty provided by Gaussian Process Regression and the actual prediction error. This relation provides us with new means for assessment of the predictions. We demonstrate how a subset of the peptides can be selected with lower prediction error compared to the whole set. We also demonstrate how such predicted standard deviations can be used for designing adaptive windowing strategies.

sted, utgiver, år, opplag, sider
OXFORD UNIV PRESS , 2017. Vol. 33, nr 4, s. 508-513
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-205074DOI: 10.1093/bioinformatics/btw619ISI: 000397264100006Scopus ID: 2-s2.0-85028336596OAI: oai:DiVA.org:kth-205074DiVA, id: diva2:1115202
Merknad

QC 20170626

Tilgjengelig fra: 2017-06-26 Laget: 2017-06-26 Sist oppdatert: 2018-09-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

The, MatthewKäll, Lukas

Søk i DiVA

Av forfatter/redaktør
Afkham, Heydar MaboudiQiu, XuanbinThe, MatthewKäll, Lukas
Av organisasjonen
I samme tidsskrift
Bioinformatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 902 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf