Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Comparison and Tracking Methods for Interactive Visualization of Topological Structures in Scalar Fields
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST). (Visualization)
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Scalar fields occur quite commonly in several application areas in both static and time-dependent forms. Hence a proper visualization of scalar fieldsneeds to be equipped with tools to extract and focus on important features of the data. Similarity detection and pattern search techniques in scalar fields present a useful way of visualizing important features in the data. This is done by isolating these features and visualizing them independently or show all similar patterns that arise from a given search pattern. Topological features are ideal for this purpose of isolating meaningful patterns in the data set and creating intuitive feature descriptors. The Merge Tree is one such topological feature which has characteristics ideally suited for this purpose. Subtrees of merge trees segment the data into hierarchical regions which are topologically defined. This kind of feature-based segmentation is more intelligent than pure data based segmentations involving windows or bounding volumes. In this thesis, we explore several different techniques using subtrees of merge trees as features in scalar field data. Firstly, we begin with a discussion on static scalar fields and devise techniques to compare features - topologically segmented regions given by the subtrees of the merge tree - against each other. Second, we delve into time-dependent scalar fields and extend the idea of feature comparison to spatio-temporal features. In this process, we also come up with a novel approach to track features in time-dependent data considering the entire global network of likely feature associations between consecutive time steps.The highlight of this thesis is the interactivity that is enabled using these feature-based techniques by the real-time computation speed of our algorithms. Our techniques are implemented in an open-source visualization framework Inviwo and are published in several peer-reviewed conferences and journals.

sted, utgiver, år, opplag, sider
KTH Royal Institute of Technology, 2017. , s. 55
Serie
TRITA-CSC-A, ISSN 1653-5723 ; 2017:23
Emneord [en]
topology, scalar fields, merge tree, tree comparison, tracking, similarity search
HSV kategori
Forskningsprogram
Datalogi
Identifikatorer
URN: urn:nbn:se:kth:diva-216375ISBN: 978-91-7729-580-8 (tryckt)OAI: oai:DiVA.org:kth-216375DiVA, id: diva2:1150643
Disputas
2017-11-15, Visualization Studio VIC, Lindstedtsvägen 7, Stockholm, 13:00 (engelsk)
Opponent
Veileder
Forskningsfinansiär
Swedish e‐Science Research Center
Merknad

QC 20171020

Tilgjengelig fra: 2017-10-20 Laget: 2017-10-19 Sist oppdatert: 2018-01-13bibliografisk kontrollert
Delarbeid
1. Extended Branch Decomposition Graphs: Structural Comparison of Scalar Data
Åpne denne publikasjonen i ny fane eller vindu >>Extended Branch Decomposition Graphs: Structural Comparison of Scalar Data
2014 (engelsk)Inngår i: Computer Graphics Forum (Proc. EuroVis), ISSN 1467-8659, Vol. 33, nr 3, s. 41-50Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present a method to find repeating topological structures in scalar data sets. More precisely, we compare all subtrees of two merge trees against each other - in an efficient manner exploiting redundancy. This provides pair-wise distances between the topological structures defined by sub/superlevel sets, which can be exploited in several applications such as finding similar structures in the same data set, assessing periodic behavior in time-dependent data, and comparing the topology of two different data sets. To do so, we introduce a novel data structure called the extended branch decomposition graph, which is composed of the branch decompositions of all subtrees of the merge tree. Based on dynamic programming, we provide two highly efficient algorithms for computing and comparing extended branch decomposition graphs. Several applications attest to the utility of our method and its robustness against noise.

sted, utgiver, år, opplag, sider
Wiley-Blackwell, 2014
HSV kategori
Forskningsprogram
Datalogi; SRA - E-vetenskap (SeRC)
Identifikatorer
urn:nbn:se:kth:diva-184831 (URN)10.1111/cgf.12360 (DOI)000340597400005 ()2-s2.0-84904414532 (Scopus ID)
Merknad

QC 20160406

Tilgjengelig fra: 2016-04-05 Laget: 2016-04-05 Sist oppdatert: 2018-01-10bibliografisk kontrollert
2. Fast Similarity Search in Scalar Fields using Merging Histograms
Åpne denne publikasjonen i ny fane eller vindu >>Fast Similarity Search in Scalar Fields using Merging Histograms
2015 (engelsk)Inngår i: Topological Methods in Data Analysis and Visualization IV: Theory, Algorithms, and Applications, Springer, 2015, s. 121-134Kapittel i bok, del av antologi (Fagfellevurdert)
Abstract [en]

Similarity estimation in scalar fields using level set topology has attracted a lot of attention in the recent past. Most existing techniques match parts of contour or merge trees against each other by estimating a best overlap between them. Due to their combinatorial nature, these methods can be computationally expensive or prone to instabilities. In this paper, we use an inexpensive feature descriptor to compare subtrees of merge trees against each other. It is the data histogram of the voxels encompassed by a subtree. A small modification of the merge tree computation algorithm allows for obtaining these histograms very efficiently. Furthermore, the descriptor is robust against instabilities in the merge tree. The method is useful in an interactive environment, where a user can search for all structures similar to an interactively selected one. Our method is conservative in the sense that it finds all similar structures, with the rare occurrence of some false positives. We show with several examples the effectiveness, efficiency and accuracy of our method.

sted, utgiver, år, opplag, sider
Springer, 2015
HSV kategori
Forskningsprogram
Datalogi; SRA - E-vetenskap (SeRC)
Identifikatorer
urn:nbn:se:kth:diva-213972 (URN)10.1007/978-3-319-44684-4_7 (DOI)2-s2.0-85020191758 (Scopus ID)9783319446820 (ISBN)
Konferanse
TopoInVis 2015, May 20-22
Merknad

QC 20160406

Tilgjengelig fra: 2017-09-07 Laget: 2017-09-07 Sist oppdatert: 2018-01-13bibliografisk kontrollert
3. Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields
Åpne denne publikasjonen i ny fane eller vindu >>Global Feature Tracking and Similarity Estimation in Time-Dependent Scalar Fields
2017 (engelsk)Inngår i: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 36, nr 3, s. 1-11Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present an algorithm for tracking regions in time-dependent scalar fields that uses global knowledge from all time steps for determining the tracks. The regions are defined using merge trees, thereby representing a hierarchical segmentation of the data in each time step. The similarity of regions of two consecutive time steps is measured using their volumetric overlap and a histogram difference. The main ingredient of our method is a directed acyclic graph that records all relevant similarity information as follows: the regions of all time steps are the nodes of the graph, the edges represent possible short feature tracks between consecutive time steps, and the edge weights are given by the similarity of the connected regions. We compute a feature track as the global solution of a shortest path problem in the graph. We use these results to steer the - to the best of our knowledge - first algorithm for spatio-temporal feature similarity estimation. Our algorithm works for 2D and 3D time-dependent scalar fields. We compare our results to previous work, showcase its robustness to noise, and exemplify its utility using several real-world data sets.

sted, utgiver, år, opplag, sider
WILEY, 2017
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-211404 (URN)10.1111/cgf.13163 (DOI)000404881200003 ()2-s2.0-85022191409 (Scopus ID)
Konferanse
19th Eurographics/IEEE VGTC Conference on Visualization (EuroVis), JUN 12-16, 2017, Barcelona, SPAIN
Merknad

QC 20170804

Tilgjengelig fra: 2017-08-04 Laget: 2017-08-04 Sist oppdatert: 2018-01-13bibliografisk kontrollert
4. Fast Topology-based Feature Tracking using a Directed Acyclic Graph
Åpne denne publikasjonen i ny fane eller vindu >>Fast Topology-based Feature Tracking using a Directed Acyclic Graph
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
HSV kategori
Identifikatorer
urn:nbn:se:kth:diva-213965 (URN)
Merknad

QC 20171020

Tilgjengelig fra: 2017-09-07 Laget: 2017-09-07 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

fulltext(34664 kB)87 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 34664 kBChecksum SHA-512
5b8736e3ab810d27f2b008adf0b5e669d778fe1507efa8688cf905acc81f9b1f8bd9c61506e10a4333c69d1201bee67dfabe6f03262b6bc1771891f65363ed00
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Saikia, Himangshu
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 87 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 437 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf