Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Symmetric solutions of evolutionary partial differential equations
KTH, Skolan för teknikvetenskap (SCI), Matematik (Inst.).
2017 (engelsk)Inngår i: Nonlinearity, ISSN 0951-7715, E-ISSN 1361-6544, Vol. 30, nr 10, s. 3932-3950Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We show that for a large class of evolutionary nonlinear and nonlocal partial differential equations, symmetry of solutions implies very restrictive properties of the solutions and symmetry axes. These restrictions are formulated in terms of three principles, based on the structure of the equations. The first principle covers equations that allow for steady solutions and shows that any spatially symmetric solution is in fact steady with a speed determined by the motion of the axis of symmetry at the initial time. The second principle includes equations that admit breathers and steady waves, and therefore is less strong: it holds that the axes of symmetry are constant in time. The last principle is a mixed case, when the equation contains terms of the kind from both earlier principles, and there may be different outcomes; for a class of such equations one obtains that a spatially symmetric solution must be constant in both time and space. We list and give examples of more than 30 well-known equations and systems in one and several dimensions satisfying these principles; corresponding results for weak formulations of these equations may be attained using the same techniques. Our investigation is a generalisation of a local and one-dimensional version of the first principle from EhrnstrOm et al (2009 Int. Math. Res. Not. 2009 4578-96) to nonlocal equations, systems and higher dimensions, as well as a study of the standing and mixed cases.

sted, utgiver, år, opplag, sider
IOP PUBLISHING LTD , 2017. Vol. 30, nr 10, s. 3932-3950
Emneord [en]
evolution equations, symmetry, nonlocal equations, Euler equations
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-215438DOI: 10.1088/1361-6544/aa8427ISI: 000411158000001Scopus ID: 2-s2.0-85030166337OAI: oai:DiVA.org:kth-215438DiVA, id: diva2:1150738
Merknad

QC 20171019

Tilgjengelig fra: 2017-10-19 Laget: 2017-10-19 Sist oppdatert: 2017-10-19bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Pei, Long

Søk i DiVA

Av forfatter/redaktør
Pei, Long
Av organisasjonen
I samme tidsskrift
Nonlinearity

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 4 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf