Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Predicting accurate contacts in thousands of Pfam domain families using PconsC3
KTH, Skolan för datavetenskap och kommunikation (CSC).
Vise andre og tillknytning
2017 (engelsk)Inngår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 33, nr 18, s. 2859-2866Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Motivation: A few years ago it was shown that by using a maximum entropy approach to describe couplings between columns in a multiple sequence alignment it is possible to significantly increase the accuracy of residue contact predictions. For very large protein families with more than 1000 effective sequences the accuracy is sufficient to produce accurate models of proteins as well as complexes. Today, for about half of all Pfam domain families no structure is known, but unfortunately most of these families have at most a few hundred members, i.e. are too small for such contact prediction methods. Results: To extend accurate contact predictions to the thousands of smaller protein families we present PconsC3, a fast and improved method for protein contact predictions that can be used for families with even 100 effective sequence members. PconsC3 outperforms direct coupling analysis (DCA) methods significantly independent on family size, secondary structure content, contact range, or the number of selected contacts. Availability and implementation: PconsC3 is available as a web server and downloadable version at http://c3.pcons.net. The downloadable version is free for all to use and licensed under the GNU General Public License, version 2. At this site contact predictions for most Pfam families are also available. We do estimate that more than 4000 contact maps for Pfam families of unknown structure have more than 50% of the top-ranked contacts predicted correctly. Contact: arne@bioinfo.se Supplementary information: Supplementary data are available at Bioinformatics online.

sted, utgiver, år, opplag, sider
Oxford University Press, 2017. Vol. 33, nr 18, s. 2859-2866
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-214872DOI: 10.1093/bioinformatics/btx332ISI: 000409541400009Scopus ID: 2-s2.0-85029813783OAI: oai:DiVA.org:kth-214872DiVA, id: diva2:1152319
Forskningsfinansiär
Swedish Research Council, VR-NT 2012-5046Swedish e‐Science Research Center
Merknad

QC 20171024

Tilgjengelig fra: 2017-10-24 Laget: 2017-10-24 Sist oppdatert: 2017-10-30bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Ekeberg, Magnus
Av organisasjonen
I samme tidsskrift
Bioinformatics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 23 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf