Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Surge Detection Using Knock Sensors in a Heavy Duty Diesel Engine
KTH.
KTH.
KTH.
KTH.
Vise andre og tillknytning
2017 (engelsk)Inngår i: SAE technical paper series, ISSN 0148-7191, Vol. 2017Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Improving turbocharger performance to increase engine efficiency has the potential to help meet current and upcoming exhaust legislation. One limiting factor is compressor surge, an air flow instability phenomenon capable of causing severe vibration and noise. To avoid surge, the turbocharger is operated with a safety margin (surge margin) which, as well as avoiding surge in steady state operation, unfortunately also lowers engine performance. This paper investigates the possibility of detecting compressor surge with a conventional engine knock sensor. It further recommends a surge detection algorithm based on their signals during transient engine operation. Three knock sensors were mounted on the turbocharger and placed along the axes of three dimensions of movement. The engine was operated in load steps starting from steady state. The steady state points of operation covered the vital parts of the engine speed and load range. The collected data was analysed with the objective of extracting information of a surging or non-surging compressor. In the charging system studied, the knock sensors detected a profound frequency peak between 5.0 Hz to 7.0 Hz. Another surge related frequency component of about 25 kHz was also observed, dependent on the turbocharger speed. Two surge detection algorithms were evaluated, one based on short time Fourier transform (STFT) and one based on the correlation integral (CI). These algorithms where then validated against temperature measurements at the compressor inlet and visual observation of oscillations of the air inlet piping. The surge detection algorithms were compared for accuracy and repeatability. The accuracy of the methods was found to be 73 % and 71 % respectively when compared to the temperature rise in the compressor inlet.

sted, utgiver, år, opplag, sider
SAE International , 2017. Vol. 2017
Emneord [en]
Compressors, Diesel engines, Signal detection, Superchargers, Temperature measurement, Turbomachinery, Accuracy and repeatabilities, Conventional engine, Correlation Integral, Extracting information, Frequency components, Heavy-duty diesel engine, Short time Fourier transforms, Steady-state operation, Engines
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-216576DOI: 10.4271/2017-24-0050Scopus ID: 2-s2.0-85028994896OAI: oai:DiVA.org:kth-216576DiVA, id: diva2:1154117
Konferanse
SAE 13th International Conference on Engines and Vehicles, ICE 2017; Capri, Napoli; Italy; 10 September 2017 through 14 September 2017
Merknad

QC 20171101

Tilgjengelig fra: 2017-11-01 Laget: 2017-11-01 Sist oppdatert: 2019-02-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Puttige, Anjan RaoCronhjort, Andreas

Søk i DiVA

Av forfatter/redaktør
Puttige, Anjan RaoHamberg, RobinLinschoten, PaulReddy, G.Cronhjort, Andreas
Av organisasjonen
I samme tidsskrift
SAE technical paper series

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 87 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf