Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improved atomistic Monte Carlo models based on ab-initio -trained neural networks: Application to FeCu and FeCr alloys
Vise andre og tillknytning
2017 (engelsk)Inngår i: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 95, nr 21, artikkel-id 214117Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We significantly improve the physical models underlying atomistic Monte Carlo (MC) simulations, through the use of ab initio fitted high-dimensional neural network potentials (NNPs). In this way, we can incorporate energetics derived from density functional theory (DFT) in MC, and avoid using empirical potentials that are very challenging to design for complex alloys. We take significant steps forward from a recent work where artificial neural networks (ANNs), exclusively trained on DFT vacancy migration energies, were used to perform kinetic MC simulations of Cu precipitation in Fe. Here, a more extensive transfer of knowledge from DFT to our cohesive model is achieved via the fitting of NNPs, aimed at accurately mimicking the most important aspects of the ab initio predictions. Rigid-lattice potentials are designed to monitor the evolution during the simulation of the system energy, thus taking care of the thermodynamic aspects of the model. In addition, other ANNs are designed to evaluate the activation energies associated with the MC events (migration towards first-nearest-neighbor positions of single point defects), thereby providing an accurate kinetic modeling. Because our methodology inherently requires the calculation of a substantial amount of reference data, we design as well lattice-free potentials, aimed at replacing the very costly DFT method with an approximate, yet accurate and considerably more computationally efficient, potential. The binary FeCu and FeCr alloys are taken as sample applications considering the extensive literature covering these systems.

sted, utgiver, år, opplag, sider
American Physical Society , 2017. Vol. 95, nr 21, artikkel-id 214117
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-216439DOI: 10.1103/PhysRevB.95.214117ISI: 000404465700001Scopus ID: 2-s2.0-85023764914OAI: oai:DiVA.org:kth-216439DiVA, id: diva2:1164019
Merknad

QC 20171208

Tilgjengelig fra: 2017-12-08 Laget: 2017-12-08 Sist oppdatert: 2017-12-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Olsson, Pär

Søk i DiVA

Av forfatter/redaktør
Olsson, Pär
Av organisasjonen
I samme tidsskrift
Physical Review B

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 125 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf