Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The inclusion of vehicle shape and aerodynamic drag estimations within the life cycle energy optimisation methodology
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0002-1848-7924
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0003-0176-5358
KTH, Skolan för teknikvetenskap (SCI), Farkost och flyg. KTH, Skolan för teknikvetenskap (SCI), Centra, VinnExcellence Center for ECO2 Vehicle design.ORCID-id: 0000-0003-1855-5437
University of Graz, Institute of Systems Sciences Innovation & Sustainability Research, Austria.ORCID-id: 0000-0002-4273-9490
Vise andre og tillknytning
2019 (engelsk)Inngår i: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 84, s. 902-907Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The present work describes a widening of the scope of the Life Cycle Energy Optimisation (LCEO) methodology with the addition of shape-related design variables. They describe the curvature of a vehicle which impacts its aerodynamic drag and therewith its operational energy demand. Aerodynamic drag is taken into account through the estimation of the drag coefficient of the vehicle body shape using computational fluid dynamics simulations. Subsequently, the aforementioned coefficient is used to calculate the operational energy demand associated with the vehicle. The methodology is applied to the design of the roof of a simplified 2D vehicle model which is both mechanically and geometrically constrained. The roof is modelled as a sandwich structure with its design variables consisting of the material compositions of the different layers, their thicknesses as well as the shape variables. The efficacy of the LCEO methodology is displayed through its ability to deal with the arising functional conflicts while simultaneously leveraging the design benefits of the underlying functional alignments. On average, the optimisation process resulted in 2.5 times lighter and 4.5 times less life cycle energy-intensive free shape designs. This redesign process has also underlined the necessity of defining an allocation strategy for the energy necessary to overcome drag within the context of vehicle sub-system redesign.

sted, utgiver, år, opplag, sider
Elsevier, 2019. Vol. 84, s. 902-907
Emneord [en]
life cycle energy optimisation; vehicle design; aerodynamic drag; functional conflicts
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-223377DOI: 10.1016/j.procir.2019.04.270OAI: oai:DiVA.org:kth-223377DiVA, id: diva2:1183815
Merknad

QC 20190906

Tilgjengelig fra: 2018-02-19 Laget: 2018-02-19 Sist oppdatert: 2019-09-09

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Bouchouireb, HamzaO'Reilly, Ciarán J.Göransson, PeterSchöggl, Josef-PeterBaumgartner, Rupert J.Potting, José
Av organisasjonen
I samme tidsskrift
Procedia CIRP

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 892 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf