Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Granularity of algorithmically constructed publication-level classifications of research publications: Identification of topics
KTH, Skolan för teknikvetenskaplig kommunikation och lärande (ECE), Avdelningen för bibliotek, språk och ARC, Bibliotek, Publiceringens infrastruktur.ORCID-id: 0000-0003-0229-3073
2018 (engelsk)Inngår i: Journal of Informetrics, ISSN 1751-1577, E-ISSN 1875-5879, Vol. 12, nr 1, s. 133-152Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The purpose of this study is to find a theoretically grounded, practically applicable and useful granularity level of an algorithmically constructed publication-level classification of research publications (ACPLC). The level addressed is the level of research topics. The methodology we propose uses synthesis papers and their reference articles to construct a baseline classification. A dataset of about 31 million publications, and their mutual citations relations, is used to obtain several ACPLCs of different granularity. Each ACPLC is compared to the baseline classification and the best performing ACPLC is identified. The results of two case studies show that the topics of the cases are closely associated with different classes of the identified ACPLC, and that these classes tend to treat only one topic. Further, the class size variation is moderate, and only a small proportion of the publications belong to very small classes. For these reasons, we conclude that the proposed methodology is suitable to determine the topic granularity level of an ACPLC and that the ACPLC identified by this methodology is useful for bibliometric analyses. 

sted, utgiver, år, opplag, sider
Elsevier Ltd , 2018. Vol. 12, nr 1, s. 133-152
Emneord [en]
Algorithmic classification, Article-level classification, Classification systems, Granularity level, Topic, Computer applications, Bibliometric analysis, Case-studies, Classification system, Different class, Different granularities, Granularity levels, Research topics, Publishing
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-223152DOI: 10.1016/j.joi.2017.12.006ISI: 000427479800010Scopus ID: 2-s2.0-85039443998OAI: oai:DiVA.org:kth-223152DiVA, id: diva2:1190422
Merknad

Export Date: 13 February 2018; Article; Correspondence Address: Sjögårde, P.; University Library, Karolinska InstitutetSweden; email: peter.sjogarde@ki.se. QC QC 20180314

Tilgjengelig fra: 2018-03-14 Laget: 2018-03-14 Sist oppdatert: 2018-05-04bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Ahlgren, Per

Søk i DiVA

Av forfatter/redaktør
Ahlgren, Per
Av organisasjonen
I samme tidsskrift
Journal of Informetrics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 306 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf