Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Bayesian neural networks for one-hour ahead wind power forecasting
KTH, Skolan för datavetenskap och kommunikation (CSC), Beräkningsvetenskap och beräkningsteknik (CST).ORCID-id: 0000-0001-6553-823X
2017 (engelsk)Inngår i: 2017 6th International Conference on Renewable Energy Research and Applications, ICRERA 2017, Institute of Electrical and Electronics Engineers (IEEE), 2017, Vol. 2017, s. 591-596Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The greatest concern facing renewable energy sources like wind is the uncertainty in production volumes as their generation ability is inherently dependent on weather conditions. When providing forecasts for newly commissioned wind farms there is a limited amount of historical power production data, while the number of potential features from different weather forecast providers is vast. Bayesian regularization is therefore seen as a possible technique for reducing model overfitting problems that may arise. This work investigates Bayesian Neural Networks for one-hour ahead forecasting of wind power generation. Initial results show that Bayesian Neural Networks display equivalent predictive performance to Neural Networks trained by Maximum Likelihood. Further results show that Bayesian Neural Networks become superior after removing irrelevant features using Automatic Relevance Determination(ARD).

sted, utgiver, år, opplag, sider
Institute of Electrical and Electronics Engineers (IEEE), 2017. Vol. 2017, s. 591-596
Serie
International Conference on Renewable Energy Research and Applications
Emneord [en]
Ahead, Automatic relevance determination, Bayesian, Forecasting, Neural networks, One-hour, Wind power
HSV kategori
Identifikatorer
URN: urn:nbn:se:kth:diva-224241DOI: 10.1109/ICRERA.2017.8191129ISI: 000426708600096Scopus ID: 2-s2.0-85042722249ISBN: 9781538620953 (tryckt)OAI: oai:DiVA.org:kth-224241DiVA, id: diva2:1190694
Konferanse
6th IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2017, 5 November 2017 through 8 November 2017, San Diego, United States
Merknad

QC 20180315

Tilgjengelig fra: 2018-03-15 Laget: 2018-03-15 Sist oppdatert: 2019-11-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Personposter BETA

Herman, Pawel

Søk i DiVA

Av forfatter/redaktør
Herman, Pawel
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 80 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf